Volume II of a two-part series, this book features 74 problems from various branches of mathematics. Topics include points and lines, topology, convex polygons, theory of primes, and other subjects. Complete solutions.
Problems that beset Archimedes, Newton, Euler, Cauchy, Gauss, Monge, Steiner, and other great mathematical minds. Features squaring the circle, pi, and similar problems. No advanced math is required. Includes 100 problems with proofs.
Over 300 unusual problems, ranging from easy to difficult, involving equations and inequalities, Diophantine equations, number theory, quadratic equations, logarithms, more. Detailed solutions, as well as brief answers, for all problems are provided.
Over 300 challenging problems in algebra, arithmetic, elementary number theory and trigonometry, selected from Mathematical Olympiads held at Moscow University. Only high school math needed. Includes complete solutions. Features 27 black-and-white illustrations. 1962 edition.
Rich selection of 100 practice problems — with hints and solutions — for students preparing for the William Lowell Putnam and other undergraduate-level mathematical competitions. Features real numbers, differential equations, integrals, polynomials, sets, other topics. Hours of stimulating challenge for math buffs at varying degrees of proficiency. References.
Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.
Volume I of a two-part series, this book features a broad spectrum of 100 challenging problems related to probability theory and combinatorial analysis. Most can be solved with elementary mathematics. Complete solutions.
Both a challenge to mathematically inclined readers and a useful supplementary text for high school and college courses, One Hundred Problems in Elementary Mathematics presents an instructive, stimulating collection of problems. Many problems address such matters as numbers, equations, inequalities, points, polygons, circles, ellipses, space, polyhedra, and spheres. An equal number deal with more amusing or more practical subjects, such as a picnic ham, blood groups, rooks on a chessboard, and the doings of the ingenious Dr. Abracadabrus. Are the problems in this book really elementary? Perhaps not in the lay reader’s sense, for anyone who desires to solve these problems must know a fair amount of mathematics, up to calculus. Nevertheless, Professor Steinhaus has given complete, detailed solutions to every one of his 100 problems, and anyone who works through the solutions will painlessly learn an astonishing amount of mathematics. A final chapter provides a true test for the most proficient readers: 13 additional unsolved problems, including some for which the author himself does not know the solutions.
Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.