Conceptual Models of Flow and Transport in the Fractured Vadose Zone

Conceptual Models of Flow and Transport in the Fractured Vadose Zone

Author: National Research Council

Publisher: National Academies Press

Published: 2001-05-21

Total Pages: 398

ISBN-13: 0309170990

DOWNLOAD EBOOK

Fluid flow and solute transport within the vadose zone, the unsaturated zone between the land surface and the water table, can be the cause of expanded plumes arising from localized contaminant sources. An understanding of vadose zone processes is, therefore, an essential prerequisite for cost-effective contaminant remediation efforts. In addition, because such features are potential avenues for rapid transport of chemicals from contamination sources to the water table, the presence of fractures and other channel-like openings in the vadose zone poses a particularly significant problem, Conceptual Models of Flow and Transport in the Fractured Vadose Zone is based on the work of a panel established under the auspices of the U.S. National Committee for Rock Mechanics. It emphasizes the importance of conceptual models and goes on to review the conceptual model development, testing, and refinement processes. The book examines fluid flow and transport mechanisms, noting the difficulty of modeling solute transport, and identifies geochemical and environmental tracer data as important components of the modeling process. Finally, the book recommends several areas for continued research.


Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources

Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources

Author: U. Ofterdinger

Publisher: Geological Society of London

Published: 2019-07-19

Total Pages: 249

ISBN-13: 1786204010

DOWNLOAD EBOOK

Fractured bedrock aquifers have traditionally been regarded as low-productivity aquifers, with only limited relevance to regional groundwater resources. It is now being increasingly recognised that these complex bedrock aquifers can play an important role in catchment management and subsurface energy systems. At shallow to intermediate depth, fractured bedrock aquifers help to sustain surface water baseflows and groundwater dependent ecosystems, provide local groundwater supplies and impact on contaminant transfers on a catchment scale. At greater depths, understanding the properties and groundwater flow regimes of these complex aquifers can be crucial for the successful installation of subsurface energy and storage systems, such as deep geothermal or Aquifer Thermal Energy Storage systems and natural gas or CO2 storage facilities as well as the exploration of natural resources such as conventional/unconventional oil and gas. In many scenarios, a robust understanding of fractured bedrock aquifers is required to assess the nature and extent of connectivity between such engineered subsurface systems at depth and overlying receptors in the shallow subsurface.