Chain Conformation and Disorder in High Mobility Semiconducting Polymers

Chain Conformation and Disorder in High Mobility Semiconducting Polymers

Author: Rodrigo Javier Noriega-Manez

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A critical step to understanding charge transport in complex systems is being able to characterize them accurately and extensively. In particular, the microstucture of conjugated polymers exhibits a coexistence of ordered and amorphous regions, with the size of the ordered regions being smaller than the length of individual polymer chains. In order to study the ordered regions we use advanced X-ray diffraction analysis in combination with computational modeling and measurements of optical and electrical properties. It was possible to uncover fundamental relationships between short-range order in pi-aggregates, aggregate connectivity and macroscopic charge transport in semiconducting polymers. An unusually high and materials-independent amount of paracrystalline disorder was found in all high-performing polymers. Computer simulations and analytical models made the connection between fluctuations in molecular arrangement and electronic traps. Charge transport studies elucidated the predominant role of paracrystallites in semicrystalline and strongly disordered polymer films. The other component of the microstructure -- the amorphous regions -- deserves our attention as well since aggregate connectivity depends on it. A model for charge transport in strongly disordered polymers was developed for this reason. The morphology of individual polymer chains can be determined by well-known statistical models. Likewise, the electronic coupling between units along a polymer chain and on different molecules can be determined by Marcus theory. Combining knowledge from both areas into an analytical and computational model that incorporates the structural and electronic properties of polymers, it is possible to explain observations that previously relied on phenomenological models. The multi-scale behavior of charges in these materials (high mobility at short scales, low mobility at long scales) is naturally described with this framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational fluctuations and correlations. Bringing all these concepts together it is possible to provide a more complete description of the way in which charges move in conjugated polymers, a set of materials that occupies an intermediate region between ordered and disordered systems, with a great amount of complexity at various length scales. Doing so will facilitate the feedback cycle between molecular design, microstructure optimization, and device performance.


Semiconducting Polymers

Semiconducting Polymers

Author: Georges Hadziioannou

Publisher: John Wiley & Sons

Published: 2006-12-15

Total Pages: 786

ISBN-13: 3527312714

DOWNLOAD EBOOK

The field of semiconducting polymers has attracted many researchers from a diversity of disciplines. Printed circuitry, flexible electronics and displays are already migrating from laboratory successes to commercial applications, but even now fundamental knowledge is deficient concerning some of the basic phenomena that so markedly influence a device's usefulness and competitiveness. This two-volume handbook describes the various approaches to doped and undoped semiconducting polymers taken with the aim to provide vital understanding of how to control the properties of these fascinating organic materials. Prominent researchers from the fields of synthetic chemistry, physical chemistry, engineering, computational chemistry, theoretical physics, and applied physics cover all aspects from compounds to devices. Since the first edition was published in 2000, significant findings and successes have been achieved in the field, and especially handheld electronic gadgets have become billion-dollar markets that promise a fertile application ground for flexible, lighter and disposable alternatives to classic silicon circuitry. The second edition brings readers up-to-date on cutting edge research in this field.


Semiconducting Polymers

Semiconducting Polymers

Author: Christine Luscombe

Publisher: Royal Society of Chemistry

Published: 2016-10-12

Total Pages: 293

ISBN-13: 1782624007

DOWNLOAD EBOOK

Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries and diodes. In recent years vast advances have been made in the area of controlled synthesis of semiconducting polymers, specifically polythiophenes. The book is separated into two main sections, the first will introduce the advances made in polymer synthesis, and the second will focus on the microstructure and property analysis that has been enabled because of the recent advances in synthetic strategies. Edited by one of the leaders in the area of polythiophene synthesis, this new book will bring the field up to date with more recent models for understanding semiconducting polymers. The book will be applicable to materials and polymers chemists in industry and academia from postgraduate level upwards.


Structure and Electronic Property Relationships in Chemically Doped Semiconducting Polymers and Polymer Photovoltaics

Structure and Electronic Property Relationships in Chemically Doped Semiconducting Polymers and Polymer Photovoltaics

Author: Taylor Aubry-Komin

Publisher:

Published: 2019

Total Pages: 201

ISBN-13:

DOWNLOAD EBOOK

This work is focused on understanding how molecular-level structural control can improve charge carrier properties in -conjugated polymers. Conjugated polymers are characterized by extended conjugation along their backbone, making them intrinsically semiconducting materials that are of interest for a wide variety of flexible, thin-film electronic applications. Polymeric semiconductors possess advantages over inorganic materials such as being lightweight, low-cost and solution processable. However, due the disordered nature of conjugated polymers and their anisotropic transport, charge carrier dynamics can be highly sensitive to structural effects. The first chapter of this dissertation gives an introduction to conjugated polymers and their relevant applications as well as how tuning morphology and doping level can influence their charge carrier properties. The second introduces a technique, known as sequential processing (SqP), that affords control over polymer domain orientation when preparing polymer films as the active layer in optoelectronic devices. We show that conventional processing methods lead to disordered, isotropic polymer networks. By contrast, SqP can be used to preserve the preferred face-on chain orientation seen with some polymer materials, yielding advantages for photovoltaics and other devices via increased vertical hole mobility. Chapter 3 turns to molecular doping of conjugated polymers and studies the effects of a bulky boron cluster dopant used to modify the charge transport properties of conjugated polymers. The design of the dopant is such that it sterically protects core-localized electron density, resulting in shielding of the electron from holes produced on the polymer. This allows the charge carriers to be highly delocalized, as confirmed both spectroscopically and by AC-Hall effect measurements. The dopants allow for high carrier mobilities to be achieved even for non-crystalline polymers. The implication is that the counterion distance is the most important factor needed to produce high carrier mobility in conjugated polymers. In the last chapter, we study a series of boron cluster dopants in which the redox potential is tuned over a large range but the anion distance is fixed. In the last chapter, we study a series of boron cluster dopants in which the redox potential is tuned over a large range but the anion distance is fixed. This allows us to disentangle the effects of energetic offset in doping on the production of free carriers. We find that the redox potential not only affects the generation of free carriers, but also the infiltration of dopants into the polymer films.


Spectroscopic Techniques for Polymer Characterization

Spectroscopic Techniques for Polymer Characterization

Author: Yukihiro Ozaki

Publisher: John Wiley & Sons

Published: 2021-10-29

Total Pages: 500

ISBN-13: 3527830324

DOWNLOAD EBOOK

An insightful exploration of cutting-edge spectroscopic techniques in polymer characterization In Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications, a team of distinguished chemists delivers a comprehensive exploration of the vast potential of spectroscopic characterization techniques in polymer research. The book offers a concise outline of the principles, advantages, instrumentation, experimental techniques, and noteworthy applications of cutting-edge spectroscopy. Covering a wide range of polymers, from nylon to complex polymeric nanocomposites, the author presents recent developments in polymer science to polymer, analytical, and material chemists, assisting them in keeping track of the progress in modern spectroscopy. Spectroscopic Techniques for Polymer Characterization contains contributions from pioneers in modern spectroscopic techniques from around the world. The included materials bridge the gap between spectroscopists, polymer scientists, and engineers in academia and industry. The book also offers: A thorough introduction to the progress in spectroscopic techniques, including polymer spectroscopy and near-infrared spectroscopy Comprehensive explorations of topical polymers studied by spectroscopy, including polymer thin films, fluoropolymers, polymer solutions, conductive polymers Practical discussions of infrared imaging, near-infrared imaging, two-dimensional correlation spectroscopy, and far-ultraviolet spectroscopy In-depth examinations of spectroscopic studies of weak hydrogen bonding in polymers Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications is a must-read reference for polymer, analytical, and physical chemists, as well as materials scientists and spectroscopists seeking a one-stop resource for polymer characterization using spectroscopic analyses.


Semiconducting Polymers

Semiconducting Polymers

Author: Bing R. Hsieh

Publisher:

Published: 1999-09-30

Total Pages: 490

ISBN-13:

DOWNLOAD EBOOK

This book examines the most recent developments in electronic conductive polymers. Topics include properties, applications, synthesis, processing and device fabrication.


Organic Thermoelectric Materials

Organic Thermoelectric Materials

Author: Zhiqun Lin

Publisher: Royal Society of Chemistry

Published: 2019-10-18

Total Pages: 330

ISBN-13: 1788014707

DOWNLOAD EBOOK

This book summarises the significant progress made in organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor.


Molecular Devices for Solar Energy Conversion and Storage

Molecular Devices for Solar Energy Conversion and Storage

Author: Haining Tian

Publisher: Springer

Published: 2017-09-14

Total Pages: 539

ISBN-13: 9811059241

DOWNLOAD EBOOK

This book shows the different molecular devices used for solar energy conversion and storage and the important characterization techniques for this kind of device. It has five chapters describing representative molecule-based solar cells, such as organic solar cells, dye-sensitized solar cells and hybrid solar cells (perovskite solar cell and quantum dots solar cells). It also includes two chapters demonstrating the use of molecular devices in the areas of solar fuel, water splitting and carbon dioxide reduction. There are further two chapters with interesting examples of solar energy storage related devices, like solar flow battery, solar capacitor and solar energy-thermal energy storage. Three chapters introduce important techniques used to characterize, investigate and evaluate the mechanism of molecular devices. The final chapter discusses the stability of perovskite solar cells. This book is relevant for a wide readership, and is particularly useful for students, researchers and industrial professionals who are working on molecular devices for solar energy utilization.