Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference

Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference

Author: R.M. Dudley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 512

ISBN-13: 1461203678

DOWNLOAD EBOOK

Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.


Probability in Banach Spaces, 9

Probability in Banach Spaces, 9

Author: Jorgen Hoffmann-Jorgensen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 422

ISBN-13: 1461202531

DOWNLOAD EBOOK

The papers contained in this volume are an indication of the topics th discussed and the interests of the participants of The 9 International Conference on Probability in Banach Spaces, held at Sandjberg, Denmark, August 16-21, 1993. A glance at the table of contents indicates the broad range of topics covered at this conference. What defines research in this field is not so much the topics considered but the generality of the ques tions that are asked. The goal is to examine the behavior of large classes of stochastic processes and to describe it in terms of a few simple prop erties that the processes share. The reward of research like this is that occasionally one can gain deep insight, even about familiar processes, by stripping away details, that in hindsight turn out to be extraneous. A good understanding about the disciplines involved in this field can be obtained from the recent book, Probability in Banach Spaces, Springer-Verlag, by M. Ledoux and M. Thlagrand. On page 5, of this book, there is a list of previous conferences in probability in Banach spaces, including the other eight international conferences. One can see that research in this field over the last twenty years has contributed significantly to knowledge in probability and has had important applications in many other branches of mathematics, most notably in statistics and functional analysis.


Infinite Divisibility of Probability Distributions on the Real Line

Infinite Divisibility of Probability Distributions on the Real Line

Author: Fred W. Steutel

Publisher: CRC Press

Published: 2003-10-03

Total Pages: 562

ISBN-13: 020301412X

DOWNLOAD EBOOK

Infinite Divisibility of Probability Distributions on the Real Line reassesses classical theory and presents new developments, while focusing on divisibility with respect to convolution or addition of independent random variables. This definitive, example-rich text supplies approximately 100 examples to correspond with all major chapter topics and reviews infinite divisibility in light of the central limit problem. It contrasts infinite divisibility with finite divisibility, discusses the preservation of infinite divisibility under mixing for many classes of distributions, and investigates self-decomposability and stability on the nonnegative reals, nonnegative integers, and the reals.


Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition

Author: Alfonso Rocha-Arteaga

Publisher: Springer Nature

Published: 2019-11-02

Total Pages: 135

ISBN-13: 3030227006

DOWNLOAD EBOOK

This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,∞, from the class L0 of selfdecomposable distributions to the class L∞ generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.


Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups

Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups

Author: Wilfried Hazod

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 626

ISBN-13: 940173061X

DOWNLOAD EBOOK

Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.