This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science. • Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners • Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization • Maximizes readership by combining fundamental science and application development
Vincent Bulone et al.: Cellulose sources and new understanding of synthesis in plants Thomas Heinze et al.:Cellulose structure and properties Thomas Rosenau, Antje Potthast, Ute Henniges et al.: Recent developments in cellulose aging (degradation / yellowing / chromophore formation) Sunkyu Park et al.:Cellulose crystallinity Lina Zhang et al.:Gelation and dissolution behavior of cellulose Yoshiyuki Nishio et al.:Cellulose and derivatives in liquid crystals Alessandro Gandini, Naceur Belgacem et al.:The surface and in-depth modification of cellulose fibers Emily D. Cranston et al.:Interfacial properties of cellulose Herbert Sixta, Michael Hummel et al.Cellulose Fibers Regenerated from Cellulose Solutions in Ionic Liquids Qi Zhou et al.:Cellulose-based biocomposites Orlando Rojas et al.:Films of cellulose nanocrystals and nanofibrils Pedro Fardim et al.:Functional cellulose particles Wadood Hamad et al.:Cellulose Composites
An ideal reference for scientists in natural and synthetic polymer research, this book applies basic biology as well as polymer and sugar chemistry to the study of cellulose, and it provides key requirements for understanding this complex science.
Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science. - Gathers together a broad spectrum of research on nanocellulose, with emphasis on the outstanding reinforcing potential when nanocellulose is included into a polymer matrix or as an additive to paper - Demonstrates systematic approaches and investigations from processing, design, characterization and applications of nanocellulose - Presents a useful reference and technical guide for nanocomposite materials R&D sectors, university academics and postgraduate students (Masters and PhD) and industrialists working in material commercialization
Many highly acclaimed and authoritative books on polymer science tend to focus on synthetic polymers. Cellulose and Cellulose Derivatives is the first authoritative book on the subject. It examines recent developments, with particular reference to cellulose (in aqueous alkali) and cellulose acetate. Packed with examples, the author takes an in-depth look at the topic, using the most reliable experimental data available. A comprehensive approach to the fundamental principles of cellulose and its derivatives in solution makes Cellulose and Cellulose Derivatives ideal reading for novices as well as experienced cellulose scientists.* Outlines the theoretical fundamentals of cellulose and cellulose derivatives* Presents comprehensive and reliable experimental results in figures and tables * Highly illustrated and easy to read
This is a comprehensive work by industrial and academic specialists proving up-to-date information on the chemistry, physics, process technology, applications and markets for man-made cellulosic fibres. It covers the properties and applications of viscose rayon, cupprammonium rayon and the new solvent-spun fibres as well as considering their relationships with the natural cellulosics such as cotton and the synthetic polymer fibres such as polyester.This overview of the only truly, naturally recyclable fibres and the latest manufacturing techniques that are being developed to produce them will be of interest to professionals in textile production, research and development, manufacturing chemists and textile technologists.The nonwovens and paper industries that use cellulose as a basic ingredient of their products will also find it valuable as will medical textiles producers and geotextiles engineers.
Cellulose and its derivatives can be found in many forms in nature and is a valuable material for all manner of applications in industry. This book is authored by an expert with many years of experience as an application engineer at renowned cellulose processing companies in the food industry. All the conventional and latest knowledge available on cellulose and its derivatives is presented. The necessary details are elucidated from a theoretical and practical viewpoint, while retaining the focus on food applications. This book is an essential source of information and includes recommendations and instructions of a general nature to assist readers in the exploration of possible applications of cellulose and its derivatives, as well as providing food for thought for the generation of new ideas for product development. Topics include gelling and rheological properties, synergistic effects with other hydrocolloids, as well as nutritional and legal aspects. The resulting compilation covers all the information and advice needed for the successful development, implementation, and handling of cellulose-containing products.
This book summarizes recent progress in cellulose chemistry. The last 10 years have witnessed important developments, because sustainability is a major concern. Biodegradable cellulose derivatives, in particular esters and ethers, are employed on a large scale. The recent developments in cellulose chemistry include unconventional methods for the synthesis of derivatives, introduction of novel solvents, e.g. ionic liquids, novel approaches to regioselective derivatization of cellulose, preparation of nano-particles and nano-composites for specific applications. These new developments are discussed comprehensively. This book is aimed at researchers and professionals working on cellulose and its derivatives. It fills an important gap in teaching, because most organic chemistry textbooks concentrate on the relatively simple chemistry of mono- and disaccharides. The chemistry and, more importantly, the applications of cellulose are only concisely mentioned.
Recent economic trends, especially the worldwide decline in oil prices, and an altered political climate in the United States have combined to bring about major reductions in research on renewable energy resources. Yet there is no escaping the "facts of life" with regard to these resources. The days of inexpensive fossil energy are clearly numbered, the credibility of nuclear energy has fallen to a new low, and fusion energy stands decades or more from practical realization. Sooner than we may wish ,we will have to turn to renewable raw materials - plant "biomass" and, especially, wood - as significant suppliers of energy for both industry and everyday needs. It is therefore especially important to have a single, comprehensive and current source of information on a key step in any process for the technological exploitation of woody materials, cellulose hydrolysis. Further more, it is essential that any such treatment be unbiased with respect to the two methods - chemical and biochemical - for the breakdown of cellulose to sugars. Researchers on cellulose hydrolysis have frequently been chided by persons from industry, especially those individuals concerned with determining the economic feasibility of various technological alternatives. They tell us that schemes for the utilization of wood and other such resources fly in the face of economic realities.