Cell Culture and Upstream Processing

Cell Culture and Upstream Processing

Author: Michael Butler

Publisher: Taylor & Francis

Published: 2007-08-07

Total Pages: 202

ISBN-13: 1134148305

DOWNLOAD EBOOK

Each chapter in Cell Culture and Upstream Processing is taken from a presentation at the highly acclaimed IBC conferences and describe ways for scientists to improve yield and optimize the cell culture production process for biopharmaceuticals, by focusing on safety, quality, economics and operability and productivity issues.


Animal Cell Biotechnology

Animal Cell Biotechnology

Author: Hansjörg Hauser

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-11-10

Total Pages: 718

ISBN-13: 3110278960

DOWNLOAD EBOOK

This book introduces fundamental principles and practical application of techniques used in the scalable production of biopharmaceuticals with animal cell cultures. A broad spectrum of subjects relevant to biologics production and manufacturing are reviewed, including the generation of robust cell lines, a survey of functional genomics for a better understanding of cell lines and processes, as well as advances in regulatory compliant upstream and downstream development. The book is an essential reference for all those interested in translational animal cell-based pharmaceutical biotechnology.


Mammalian Cell Cultures for Biologics Manufacturing

Mammalian Cell Cultures for Biologics Manufacturing

Author: Weichang Zhou

Publisher: Springer

Published: 2014-01-15

Total Pages: 262

ISBN-13: 3642540503

DOWNLOAD EBOOK

Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.


Cell Culture Engineering

Cell Culture Engineering

Author: Gyun Min Lee

Publisher: John Wiley & Sons

Published: 2020-01-13

Total Pages: 436

ISBN-13: 3527343342

DOWNLOAD EBOOK

Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.


Cell Culture Engineering

Cell Culture Engineering

Author: Wei-Shu Hu

Publisher: Springer

Published: 2006-08-16

Total Pages: 179

ISBN-13: 3540340076

DOWNLOAD EBOOK

Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.


Single-Use Technology in Biopharmaceutical Manufacture

Single-Use Technology in Biopharmaceutical Manufacture

Author: Regine Eibl

Publisher: John Wiley & Sons

Published: 2019-07-18

Total Pages: 367

ISBN-13: 1119477786

DOWNLOAD EBOOK

Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.


Continuous Manufacturing of Pharmaceuticals

Continuous Manufacturing of Pharmaceuticals

Author: Peter Kleinebudde

Publisher: John Wiley & Sons

Published: 2017-09-05

Total Pages: 645

ISBN-13: 1119001323

DOWNLOAD EBOOK

A comprehensive look at existing technologies and processes for continuous manufacturing of pharmaceuticals As rising costs outpace new drug development, the pharmaceutical industry has come under intense pressure to improve the efficiency of its manufacturing processes. Continuous process manufacturing provides a proven solution. Among its many benefits are: minimized waste, energy consumption, and raw material use; the accelerated introduction of new drugs; the use of smaller production facilities with lower building and capital costs; the ability to monitor drug quality on a continuous basis; and enhanced process reliability and flexibility. Continuous Manufacturing of Pharmaceuticals prepares professionals to take advantage of that exciting new approach to improving drug manufacturing efficiency. This book covers key aspects of the continuous manufacturing of pharmaceuticals. The first part provides an overview of key chemical engineering principles and the current regulatory environment. The second covers existing technologies for manufacturing both small-molecule-based products and protein/peptide products. The following section is devoted to process analytical tools for continuously operating manufacturing environments. The final two sections treat the integration of several individual parts of processing into fully operating continuous process systems and summarize state-of-art approaches for innovative new manufacturing principles. Brings together the essential know-how for anyone working in drug manufacturing, as well as chemical, food, and pharmaceutical scientists working on continuous processing Covers chemical engineering principles, regulatory aspects, primary and secondary manufacturing, process analytical technology and quality-by-design Contains contributions from researchers in leading pharmaceutical companies, the FDA, and academic institutions Offers an extremely well-informed look at the most promising future approaches to continuous manufacturing of innovative pharmaceutical products Timely, comprehensive, and authoritative, Continuous Manufacturing of Pharmaceuticals is an important professional resource for researchers in industry and academe working in the fields of pharmaceuticals development and manufacturing.


Introduction to Biomanufacturing

Introduction to Biomanufacturing

Author: Northeast Biomanufacturing Center & Collaborative

Publisher:

Published: 2012-11-03

Total Pages: 510

ISBN-13: 9781939070012

DOWNLOAD EBOOK

Today is a time of unparalleled excitement in the world of biopharmaceuticals. This book is a compendium of a tremendous body of knowledge, distilled into its most essential parts. Not only are there theoretical and conceptual ideas about biopharmaceutical manufacturing, but also content specific to skills and abilities. It serves as a well-paced guide for beginning learners as well as a cogent reference for seasoned biotechnology professionals alike. This book will help a new generation of students to become inspired and familiarize themselves with the theories, principles, and vernacular of biopharmaceutical production and all that it entails. A quick overview of contents include; Operational Excellence, Facilities, Metrology, Validation, Environmental Health & Safety (EHS), Quality Assurance, Microbiological Control, Quality Control Biochemistry, Upstream Processing, Downstream Processing, Process Development, and a Master Glossary.


Cell Culture and Upstream Processing

Cell Culture and Upstream Processing

Author: Michael Butler

Publisher: Garland Science

Published: 2007-06-30

Total Pages: 250

ISBN-13: 0203967232

DOWNLOAD EBOOK

Upstream processing refers to the production of proteins by cells genetically engineered to contain the human gene which will express the protein of interest. The demand for large quantities of specific proteins is increasing the pressure to boost cell culture productivity, and optimizing bioreactor output has become a primary concern for most pharmaceutical companies. Each chapter in Cell Culture and Upstream Processing is taken from presentations at the highly acclaimed IBC conferences as well as meetings of the European Society for Animal Cell Technology (ESACT) and Protein Expression in Animal Cells (PEACe) and describes how to improve yield and optimize the cell culture production process for biopharmaceuticals, by focusing on safety, quality, economics and operability and productivity issues. Cell Culture and Upstream Processing will appeal to a wide scientific audience, both professional practitioners of animal cell technology as well as students of biochemical engineering or biotechnology in graduate or high level undergraduate courses at university.


Cell Line Development

Cell Line Development

Author: Mohamed Al-Rubeai

Publisher: Springer Science & Business Media

Published: 2009-08-11

Total Pages: 259

ISBN-13: 9048122457

DOWNLOAD EBOOK

Mammalian cell lines command an effective monopoly for the production of therapeutic proteins that require post-translational modifications. This unique advantage outweighs the costs associated with mammalian cell culture, which are far grater in terms of development time and manufacturing when compared to microbial culture. The development of cell lines has undergone several advances over the years, essentially to meet the requirement to cut the time and costs associated with using such a complex hosts as production platforms. This book provides a comprehensive guide to the methodology involved in the development of cell lines and the cell engineering approach that can be employed to enhance productivity, improve cell function, glycosylation and secretion and control apoptosis. It presents an overall picture of the current topics central to expression engineering including such topics as epigenetics and the use of technologies to overcome positional dependent inactivation, the use of promoter and enhancer sequences for expression of various transgenes, site directed engineering of defined chromosomal sites, and examination of the role of eukaryotic nucleus as the controller of expression of genes that are introduced for production of a desired product. It includes a review of selection methods for high producers and an application developed by a major biopharmaceutical industry to expedite the cell line development process. The potential of cell engineering approch to enhance cell lines through the manipulation of single genes that play important roles in key metabolic and regulatory pathways is also explored throughout.