Cellular processes, signaled by UV radiation, contribute to the behavior of plants under various stresses in the environment. This book aims to introduce developments and instrumentation for cell biology, to update our understanding of the effects of UV radiation, and to evaluate how plants use UV signals to protect against damage.
Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€"recombinant DNA, scanning tunneling microscopes, and moreâ€"are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€"for funding, effective information systems, and other supportâ€"of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.
Addresses measurements in new fields such as cellular and molecular biology. Equips readers with the necessary background in electric circuits. Statistical coverage shows how to determine trial sizes.
The book fills a void as a textbook with hands-on laboratory exercises designed for biomedical engineering undergraduates in their senior year or the first year of graduate studies specializing in electrical aspects of bioinstrumentation. Each laboratory exercise concentrates on measuring a biophysical or biomedical entity, such as force, blood pressure, temperature, heart rate, respiratory rate, etc., and guides students though all the way from sensor level to data acquisition and analysis on the computer. The book distinguishes itself from others by providing electrical circuits and other measurement setups that have been tested by the authors while teaching undergraduate classes at their home institute over many years. Key Features: • Hands-on laboratory exercises on measurements of biophysical and biomedical variables • Each laboratory exercise is complete by itself and they can be covered in any sequence desired by the instructor during the semester • Electronic equipment and supplies required are typical for biomedical engineering departments • Data collected by undergraduate students and data analysis results are provided as samples • Additional information and references are included for preparing a report or further reading at the end of each chapter Students using this book are expected to have basic knowledge of electrical circuits and troubleshooting. Practical information on circuit components, basic laboratory equipment, and circuit troubleshooting is also provided in the first chapter of the book.
Cell separation is at the core of current methods in experimental biology and medicine. Its importance is illustrated by the large number of physical and biochemical principles that have been evaluated for application to cell separation. The development of cell separation methods is driven by the needs of biological and medical research, and the ever-increasing demands for sensitivity, selectivity, yield, timeliness and economy of the process. The interdisciplinary nature of research in this area and the volume of information available in research publications and conferences necessitates a basic description of the fundamental processes involved in magnetic cell separation that may help the user in navigating this wealth of information available online and in scientific publications. This book will appeal to researchers in many areas utilizing this technique, including those working in cell biology, clinical research, inorganic chemistry, biochemistry, chemical engineering, materials science, physics and electrical engineering. - Provides examples of how to calculate the volume magnetic susceptibility, a fundamental quantity for calculating the magnetic force acting on a cell, from various types of magnetic susceptibilities available in literature - Introduces the elements of magnetostatics as they apply to cell magnetization and the magnetization of magnetic micro- and nano- particles used for cell separation - Describes the parameters used to determine cell magnetophoresis
Bioinstrumentation deals with the instrumentation techniquesand principles used for measuring physical, physiological,biochemical and biological factors in man or other livingorganisms. This book provides a comprehensive knowledgeabout the basic principles and applications of the tools andtechniques generally used in biology and also those used in thegrowing field of molecular biology. This book will prove to be adependable reference book for students and teachers ofbiological sciences.