Causality and Causal Modelling in the Social Sciences

Causality and Causal Modelling in the Social Sciences

Author: Federica Russo

Publisher: Springer Science & Business Media

Published: 2008-09-18

Total Pages: 236

ISBN-13: 1402088175

DOWNLOAD EBOOK

This investigation into causal modelling presents the rationale of causality, i.e. the notion that guides causal reasoning in causal modelling. It is argued that causal models are regimented by a rationale of variation, nor of regularity neither invariance, thus breaking down the dominant Human paradigm. The notion of variation is shown to be embedded in the scheme of reasoning behind various causal models. It is also shown to be latent – yet fundamental – in many philosophical accounts. Moreover, it has significant consequences for methodological issues: the warranty of the causal interpretation of causal models, the levels of causation, the characterisation of mechanisms, and the interpretation of probability. This book offers a novel philosophical and methodological approach to causal reasoning in causal modelling and provides the reader with the tools to be up to date about various issues causality rises in social science.


Causal Models in the Social Sciences

Causal Models in the Social Sciences

Author: H.M. Blalock Jr.

Publisher: Routledge

Published: 2017-07-28

Total Pages: 461

ISBN-13: 1351529781

DOWNLOAD EBOOK

Causal models are formal theories stating the relationships between precisely defined variables, and have become an indispensable tool of the social scientist. This collection of articles is a course book on the causal modeling approach to theory construction and data analysis. H. M. Blalock, Jr. summarizes the then-current developments in causal model utilization in sociology, political science, economics, and other disciplines. This book provides a comprehensive multidisciplinary picture of the work on causal models. It seeks to address the problem of measurement in the social sciences and to link theory and research through the development of causal models.Organized into five sections (Simple Recursive Models, Path Analysis, Simultaneous Equations Techniques, The Causal Approach to Measurement Error, and Other Complications), this volume contains twenty-seven articles (eight of which were specially commissioned). Each section begins with an introduction explaining the concepts to be covered in the section and links them to the larger subject. It provides a general overview of the theory and application of causal modeling.Blalock argues for the development of theoretical models that can be operationalized and provide verifiable predictions. Many of the discussions of this subject that occur in other literature are too technical for most social scientists and other scholars who lack a strong background in mathematics. This book attempts to integrate a few of the less technical papers written by econometricians such as Koopmans, Wold, Strotz, and Fisher with discussions of causal approaches in the social and biological sciences. This classic text by Blalock is a valuable source of material for those interested in the issue of measurement in the social sciences and the construction of mathematical models.


Handbook of Causal Analysis for Social Research

Handbook of Causal Analysis for Social Research

Author: Stephen L. Morgan

Publisher: Springer Science & Business Media

Published: 2013-04-22

Total Pages: 423

ISBN-13: 9400760949

DOWNLOAD EBOOK

What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.


Statistical Models and Causal Inference

Statistical Models and Causal Inference

Author: David A. Freedman

Publisher: Cambridge University Press

Published: 2010

Total Pages: 416

ISBN-13: 0521195004

DOWNLOAD EBOOK

David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.


Designing Research in the Social Sciences

Designing Research in the Social Sciences

Author: Martino Maggetti

Publisher: SAGE

Published: 2012-12-18

Total Pages: 202

ISBN-13: 144629109X

DOWNLOAD EBOOK

This innovative research design text will help you make informed choices when carrying out your research project. Covering both qualitative and quantitative approaches, and with examples drawn from a wide range of social science disciplines, the authors explain what is at stake when choosing a research design, and discuss the trade-offs that researchers have to make when considering issues such as: - causality - categories and classification - heterogeneity - interdependence - time This book will appeal to students and researchers looking for an in-depth understanding of research design issues to help them design their projects in a thoughtful and responsible way.


Research Design

Research Design

Author: Stephen Gorard

Publisher: SAGE

Published: 2013-02-01

Total Pages: 234

ISBN-13: 1446290859

DOWNLOAD EBOOK

Research design is of critical importance in social research, despite its relative neglect in many methods resources. Early consideration of design in relation to research questions leads to the elimination or diminution of threats to eventual research claims, by encouraging internal validity and substantially reducing the number of alternative explanations for any finite number of research ′observations′. This new book: discusses the nature of design; gives an introduction to design notation; offers a flexible approach to new designs; looks at a range of standard design models; and presents craft tips for real-life problems and compromises. Most importantly, it provides the rationale for preferring one design over another within any given context. Each section is illustrated with case studies of real work and concludes with suggested readings and topics for discussion in seminars and workshops, making it an ideal textbook for postgraduate research methods courses. Based on the author′s teaching on the ESRC Doctoral Training Centre "Masters in Research Methods" at the University of Birmingham, and his ongoing work for the ESRC Researcher Development Initiative, this is an essential text for postgraduate researchers and academics. There is no book like Research Design on the market that addresses all of these issues in an easy to comprehend style, for those who want to design research and make critical judgements about the designs of others.


Causality

Causality

Author: Judea Pearl

Publisher: Cambridge University Press

Published: 2009-09-14

Total Pages: 487

ISBN-13: 052189560X

DOWNLOAD EBOOK

Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...


Causal Inference

Causal Inference

Author: Scott Cunningham

Publisher: Yale University Press

Published: 2021-01-26

Total Pages: 585

ISBN-13: 0300255888

DOWNLOAD EBOOK

An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.