This volume contains the Proceedings of the Conference on Completeness Problems, Carleson Measures, and Spaces of Analytic Functions, held from June 29–July 3, 2015, at the Institut Mittag-Leffler, Djursholm, Sweden. The conference brought together experienced researchers and promising young mathematicians from many countries to discuss recent progress made in function theory, model spaces, completeness problems, and Carleson measures. This volume contains articles covering cutting-edge research questions, as well as longer survey papers and a report on the problem session that contains a collection of attractive open problems in complex and harmonic analysis.
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences.
Now is a time of great interest in mathematics education. Student performance, curriculum, and teacher education are the subjects of much scrutiny and debate. Studies on the mathematical knowledge of prospective and practicing U. S. teachers suggest ways to improve their mathematical educations. It is often assumed that because the topics covered in K-12 mathematics are so basic, they should be easy to teach. However, research in mathematics education has shown that to teach well,substantial mathematical understanding is necessary--even to teach whole-number arithmetic. Prospective teachers need a solid understanding of mathematics so that they can teach it as a coherent, reasoned activity and communicate its elegance and power. This volume gathers and reports current thinkingon curriculum and policy issues affecting the mathematical education of teachers. It considers two general themes: (1) the intellectual substance in school mathematics; and (2) the special nature of the mathematical knowledge needed for teaching. The underlying study was funded by a grant from the U.S. Department of Education. The mathematical knowledge needed for teaching is quite different from that required by students pursuing other mathematics-related professions. Material here is gearedtoward stimulating efforts on individual campuses to improve programs for prospective teachers. This report contains general recommendations for all grades and extensive discussions of the specific mathematical knowledge required for teaching elementary, middle, and high-school grades, respectively.It is also designed to marshal efforts in the mathematical sciences community to back important national initiatives to improve mathematics education and to expand professional development opportunities. The book will be an important resource for mathematics faculty and other parties involved in the mathematical education of teachers. Information for our distributors: This series is published in cooperation with the Mathematical Association of America.
This self-contained treatment offers a contemporary and systematic development of the theory and application of Newton methods, which are undoubtedly the most effective tools for solving equations appearing in computational sciences. Its focal point resides in an exhaustive analysis of the convergence properties of several Newton variants used in connection to specific real life problems originated from astrophysics, engineering, mathematical economics and other applied areas. What distinguishes this book from others is the fact that the weak convergence conditions inaugurated here allow for a wider applicability of Newton methods; finer error bounds on the distances involved, and a more precise information on the location of the solution. These factors make this book ideal for researchers, practitioners and students.
This volume is based on lectures delivered at the 2016 AMS Short Course ""Rigorous Numerics in Dynamics"", held January 4-5, 2016, in Seattle, Washington. Nonlinear dynamics shapes the world around us, from the harmonious movements of celestial bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell. Mathematically these phenomena are modeled by nonlinear dynamical systems, in the form of ODEs, PDEs and delay equations. The presence of nonlinearities complicates the analysis, and the difficulties are even greater for PDEs and delay equations, which a.
Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.
"One of the more sought-after books designed by Bruce Rogers. Euclid's diagrams have long been problematic typographically. Rogers' solutions are realized with characteristic elegance and restraint." -- Description from Ursus Books.