Module Theory

Module Theory

Author: Alberto Facchini

Publisher: Springer Science & Business Media

Published: 2012-02-03

Total Pages: 296

ISBN-13: 3034803036

DOWNLOAD EBOOK

This book presents topics in module theory and ring theory: some, such as Goldie dimension and semiperfect rings are now considered classical and others more specialized, such as dual Goldie dimension, semilocal endomorphism rings, serial rings and modules.


Categories of Modules over Endomorphism Rings

Categories of Modules over Endomorphism Rings

Author: Theodore Gerard Faticoni

Publisher: American Mathematical Soc.

Published: 1993

Total Pages: 164

ISBN-13: 9780821825549

DOWNLOAD EBOOK

It is the goal of the memoir to develop a functorial transfer of properties between [italic capital]A and [script capital]M[subscript italic capital]E, the category of modules over [italic capital]E, that is more sensitive than the traditional starting point, Hom([italic capital]A, ·). This memoir should be accessible to anyone who has a working knowledge of rings, modules, functors, and categories equivalent to that gained by reading Anderson and Fuller's text "Rings and Categories of Modules."


Approximations and Endomorphism Algebras of Modules

Approximations and Endomorphism Algebras of Modules

Author: Rüdiger Göbel

Publisher: Walter de Gruyter

Published: 2012-10-01

Total Pages: 1002

ISBN-13: 3110218119

DOWNLOAD EBOOK

This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.


Endomorphism Rings of Abelian Groups

Endomorphism Rings of Abelian Groups

Author: Piotr A. Krylov

Publisher: Springer Science & Business Media

Published: 2003-07-31

Total Pages: 460

ISBN-13: 9781402014383

DOWNLOAD EBOOK

Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomor phism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further develop ment of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much stu died in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63].


Foundations of Module and Ring Theory

Foundations of Module and Ring Theory

Author: Robert Wisbauer

Publisher: Routledge

Published: 2018-05-11

Total Pages: 622

ISBN-13: 1351447343

DOWNLOAD EBOOK

This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.


Rings and Categories of Modules

Rings and Categories of Modules

Author: Frank W. Anderson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 386

ISBN-13: 1461244188

DOWNLOAD EBOOK

This book is intended to provide a reasonably self-contained account of a major portion of the general theory of rings and modules suitable as a text for introductory and more advanced graduate courses. We assume the famil iarity with rings usually acquired in standard undergraduate algebra courses. Our general approach is categorical rather than arithmetical. The continuing theme of the text is the study of the relationship between the one-sided ideal structure that a ring may possess and the behavior of its categories of modules. Following a brief outline of set-theoretic and categorical foundations, the text begins with the basic definitions and properties of rings, modules and homomorphisms and ranges through comprehensive treatments of direct sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson radical, the hom and tensor functions, Morita equivalence and duality, de composition theory of injective and projective modules, and semi perfect and perfect rings. In this second edition we have included a chapter containing many of the classical results on artinian rings that have hdped to form the foundation for much of the contemporary research on the representation theory of artinian rings and finite dimensional algebras. Both to illustrate the text and to extend it we have included a substantial number of exercises covering a wide spectrum of difficulty. There are, of course" many important areas of ring and module theory that the text does not touch upon.


Modules and Rings

Modules and Rings

Author: John Dauns

Publisher: Cambridge University Press

Published: 1994-10-28

Total Pages: 470

ISBN-13: 0521462584

DOWNLOAD EBOOK

This book on modern module and non-commutative ring theory is ideal for beginning graduate students. It starts at the foundations of the subject and progresses rapidly through the basic concepts to help the reader reach current research frontiers. Students will have the chance to develop proofs, solve problems, and to find interesting questions. The first half of the book is concerned with free, projective, and injective modules, tensor algebras, simple modules and primitive rings, the Jacobson radical, and subdirect products. Later in the book, more advanced topics, such as hereditary rings, categories and functors, flat modules, and purity are introduced. These later chapters will also prove a useful reference for researchers in non-commutative ring theory. Enough background material (including detailed proofs) is supplied to give the student a firm grounding in the subject.


Algebra

Algebra

Author: I. Martin Isaacs

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 531

ISBN-13: 0821847996

DOWNLOAD EBOOK

as a student." --Book Jacket.


Semilocal Categories and Modules with Semilocal Endomorphism Rings

Semilocal Categories and Modules with Semilocal Endomorphism Rings

Author: Alberto Facchini

Publisher: Springer Nature

Published: 2019-10-23

Total Pages: 473

ISBN-13: 3030232840

DOWNLOAD EBOOK

This book collects and coherently presents the research that has been undertaken since the author’s previous book Module Theory (1998). In addition to some of the key results since 1995, it also discusses the development of much of the supporting material. In the twenty years following the publication of the Camps-Dicks theorem, the work of Facchini, Herbera, Shamsuddin, Puninski, Prihoda and others has established the study of serial modules and modules with semilocal endomorphism rings as one of the promising directions for module-theoretic research. Providing readers with insights into the directions in which the research in this field is moving, as well as a better understanding of how it interacts with other research areas, the book appeals to undergraduates and graduate students as well as researchers interested in algebra.


Model Theory and Modules

Model Theory and Modules

Author: Mike Prest

Publisher: Cambridge University Press

Published: 1988-02-25

Total Pages: 402

ISBN-13: 0521348331

DOWNLOAD EBOOK

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.