Catalysis

Catalysis

Author: John R. Anderson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 270

ISBN-13: 3642932789

DOWNLOAD EBOOK

Catalytic oxidation processes are bf central importance to a substantial part of large-scale chemical industry. Indeed, this area of industrial catalysis has an extremely long history which stretches back well into the last century. The development and growth of catalytic oxi dation processes for the manufacture of commodities such as sulfuric acid and nitric acid can be viewed as indicators for the growth of the early and middle years of the entire inorganic chemical industry, and in an analogous fashion the manufacture of products such as phthalic anhydride, maleic anhydride and ethylene oxide has been central to the development of an organic chemical industry. We should all be able" to learn from history, and present-day scientists and technologists will find considerable benefit in following the account of the historical development of catalytic oxidation processes presented in Chapter I by Drs. G. Chinchen, P. Davies and R. J. Sampson. Alkenes are important intermediates in many processes in organic chemical industry. Being mostly petroleum derived, the alkene availability pattern does not necessar ily match consumption requirements and an alkene inter conversion process such as metathesis is clearly of in dustrial importance. In fact alkene metathesis, in addi tion to its industrial significance, poses an interesting mechanistic problem. upon which considerable effort has been expended in recent years and which is now fairly well understood.


Natural Gas Conversion II

Natural Gas Conversion II

Author: H.E. Curry-Hyde

Publisher: Elsevier

Published: 1994-07-15

Total Pages: 601

ISBN-13: 0080887600

DOWNLOAD EBOOK

This Symposium provided the opportunity to review progress after more than 10 years of research and development in the field of natural gas conversion. Oxidative coupling of methane as a route to higher value fuels or feedstock was a major part of the program. The advances in understanding of reaction mechanisms and catalyst structure were discussed in a Plenary paper and in many of the contributed papers. The homogeneous gas phase chemistry involved in methane oxidation is relevant not only to oxidative coupling but also to synthesis gas and methanol production via partial oxidation. This field is reviewed in a Plenary paper and contributed papers describe developments in catalysts and technology for partial oxidation to synthesis gas and to methanol. An alternative route to synthesis gas from methane currently receiving attention is carbon dioxide reforming. This technology is reviewed in a Plenary paper and recent advances are described in contributed papers. The first detailed account of the Shell SMDS Fischer-Tropsch process for production of transport fuels from natural gas recently commercialised in Malaysia is given in this book. Papers discuss structural aspects of Fischer-Tropsch catalysts, modifications of Fischer-Tropsch catalysts to produce light olefins, and the possibilities of operating a Fischer-Tropsch process off-shore. Methanol as an intermediate in natural gas conversion continues to attract attention, and methanol synthesis and conversion are discussed in contributed papers. The possibilities of finding new uses for methane are treated in a Plenary paper and arguments for using methane as a fuel rather than a feedstock are also presented. Among the new uses of methane considered are the generation of electricity in fuel cells and the use of methane as a reductant for NOx emissions. The papers will be of interest to scientists and engineers working in the field of gas conversion, transportation fuels, primary petrochemicals and catalysis.


Natural Gas Conversion VI

Natural Gas Conversion VI

Author: T.H. Fleisch

Publisher: Elsevier

Published: 2001-06-01

Total Pages: 577

ISBN-13: 0080537316

DOWNLOAD EBOOK

This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.


Catalysts for Syngas Production

Catalysts for Syngas Production

Author: Javier Ereña Loizaga

Publisher: MDPI

Published: 2020-12-10

Total Pages: 184

ISBN-13: 3039365959

DOWNLOAD EBOOK

This Special Issue on “Catalysts for Syngas Production”, included in the Catalysts open access journal, shows new research about the development of catalysts and catalytic routes for syngas production, and the optimization of the reaction conditions for the process. This issue includes ten articles about the different innovative processes for syngas production. Synthesis gas (or syngas) is a mixture of hydrogen and carbon monoxide, with different chemical composition and H2/CO molar ratios, depending on the feedstock and production technology used. Syngas may be obtained from alternative sources to oil, such as natural gas, coal, biomass, organic wastes, etc. Syngas is a very good intermediate for the production of high value compounds at the industrial scale, such as hydrogen, methanol, liquid fuels, and a wide range of chemicals. Accordingly, efforts should be made on the co-feeding of CO2 with syngas, as an alternative for reducing greenhouse gas emissions. In addition, more syngas will be required in the near future, in order to satisfy the demand for synfuels and high value chemicals.


Chemicals from Synthesis Gas

Chemicals from Synthesis Gas

Author: R.A. Sheldon

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 234

ISBN-13: 9401710198

DOWNLOAD EBOOK

The origins of the petrochemical industry can be traced back to the 1920s when simple organic chemicals such as ethanol and isopropanol were first prepared on an industrial scale from by-products (ethylene and propylene) of oil refining. This oil-based petrochemical industry, with lower olefms and aromatics as the key building blocks, rapidly developed into the enormous industry it is today. A multitude of products that are indispensible to modern day society, from plastics to pharmaceuticals, are derived from oil and natural gas-based hydro carbons. The industry had its heyday in the '50s and '60s when predictions of future growth rates tended to be exponential curves. However, two developments that took place in the early '70s disturbed this simplistic and optimistic view of the future. Firstly, the publication of the report for the Cub of Rome on the 'Limits to Growth' emphasized the finite nature of non-renewable fossil fuel resources. Secondly, the Oil Crisis of 1973 emphasized the vulnerability of an energy and chemicals industry that is based largely on a single raw material.


Methane Conversion by Oxidative Processes

Methane Conversion by Oxidative Processes

Author: Wolf

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 556

ISBN-13: 9401574499

DOWNLOAD EBOOK

A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.