Humanities Data Analysis

Humanities Data Analysis

Author: Folgert Karsdorp

Publisher: Princeton University Press

Published: 2021-01-12

Total Pages: 352

ISBN-13: 0691172366

DOWNLOAD EBOOK

A practical guide to data-intensive humanities research using the Python programming language The use of quantitative methods in the humanities and related social sciences has increased considerably in recent years, allowing researchers to discover patterns in a vast range of source materials. Despite this growth, there are few resources addressed to students and scholars who wish to take advantage of these powerful tools. Humanities Data Analysis offers the first intermediate-level guide to quantitative data analysis for humanities students and scholars using the Python programming language. This practical textbook, which assumes a basic knowledge of Python, teaches readers the necessary skills for conducting humanities research in the rapidly developing digital environment. The book begins with an overview of the place of data science in the humanities, and proceeds to cover data carpentry: the essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. Then, drawing from real-world, publicly available data sets that cover a variety of scholarly domains, the book delves into detailed case studies. Focusing on textual data analysis, the authors explore such diverse topics as network analysis, genre theory, onomastics, literacy, author attribution, mapping, stylometry, topic modeling, and time series analysis. Exercises and resources for further reading are provided at the end of each chapter. An ideal resource for humanities students and scholars aiming to take their Python skills to the next level, Humanities Data Analysis illustrates the benefits that quantitative methods can bring to complex research questions. Appropriate for advanced undergraduates, graduate students, and scholars with a basic knowledge of Python Applicable to many humanities disciplines, including history, literature, and sociology Offers real-world case studies using publicly available data sets Provides exercises at the end of each chapter for students to test acquired skills Emphasizes visual storytelling via data visualizations


Case Studies in Neural Data Analysis

Case Studies in Neural Data Analysis

Author: Mark A. Kramer

Publisher: MIT Press

Published: 2016-11-04

Total Pages: 385

ISBN-13: 0262529378

DOWNLOAD EBOOK

A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website.


Data Analysis for Business, Economics, and Policy

Data Analysis for Business, Economics, and Policy

Author: Gábor Békés

Publisher: Cambridge University Press

Published: 2021-05-06

Total Pages: 741

ISBN-13: 1108483011

DOWNLOAD EBOOK

A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.


Applied Functional Data Analysis

Applied Functional Data Analysis

Author: J.O. Ramsay

Publisher: Springer

Published: 2007-11-23

Total Pages: 194

ISBN-13: 0387224653

DOWNLOAD EBOOK

This book contains the ideas of functional data analysis by a number of case studies. The case studies are accessible to research workers in a wide range of disciplines. Every reader should gain not only a specific understanding of the methods of functional data analysis, but more importantly a general insight into the underlying patterns of thought. There is an associated web site with MATLABr and S?PLUSr implementations of the methods discussed.


Data Science in R

Data Science in R

Author: Deborah Nolan

Publisher: CRC Press

Published: 2015-04-21

Total Pages: 533

ISBN-13: 1482234823

DOWNLOAD EBOOK

Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts


Case Studies in Applied Bayesian Data Science

Case Studies in Applied Bayesian Data Science

Author: Kerrie L. Mengersen

Publisher: Springer Nature

Published: 2020-05-28

Total Pages: 415

ISBN-13: 3030425533

DOWNLOAD EBOOK

Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.


Practical Data Analysis

Practical Data Analysis

Author: Peter G. Bryant

Publisher: McGraw-Hill/Irwin

Published: 1998-11

Total Pages: 0

ISBN-13: 9780256238716

DOWNLOAD EBOOK

Practical Data Analysis: Case Studies in Business Statistics is a collection of 75 class tested case studies for use in introductory business statistics and general statistics. All cases are drawn from real situations in a broad range of business, economic, and social science settings and include small and large data sets for analysis by students. The philosophy behind the package is to let the cases and data drive or supplement the course. Doing so provides three important opportunities for students and instructors: useful computing experience, hands-on activity, which is more motivating than the traditional course format, and a sense of realism about the use of statistics.


Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Author: John D. Kelleher

Publisher: MIT Press

Published: 2020-10-20

Total Pages: 853

ISBN-13: 0262361108

DOWNLOAD EBOOK

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.


Multiple Case Study Analysis

Multiple Case Study Analysis

Author: Robert E. Stake

Publisher: Guilford Press

Published: 2013-04-29

Total Pages: 496

ISBN-13: 1462512402

DOWNLOAD EBOOK

Examining situational complexity is a vital part of social and behavioral science research. This engaging text provides an effective process for studying multiple cases--such as sets of teachers, staff development sessions, or clinics operating in different locations--within one complex program. The process also can be used to investigate broadly occurring phenomena without programmatic links, such as leadership or sibling rivalry. Readers learn to design, analyze, and report studies that balance common issues across the group of cases with the unique features and context of each case. Three actual case reports from a transnational early childhood program illustrate the author's approach, and helpful reproducible worksheets facilitate multicase recording and analysis.


R and Data Mining

R and Data Mining

Author: Yanchang Zhao

Publisher: Academic Press

Published: 2012-12-31

Total Pages: 251

ISBN-13: 012397271X

DOWNLOAD EBOOK

R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work