This book presents both cutting-edge and established methods for studying cardiac gene expression. The protocols provide a template for solid research, and cover the process through screening, analysis, characterization, and functional confirmation of novel genes or known genes with a new function. The concluding section of the book highlights methods that facilitate overexpression or cardiac-specific targeted gene deletion.
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
This open access book focuses on the molecular mechanism of congenital heart disease and pulmonary hypertension, offering new insights into the development of pulmonary circulation and the ductus arteriosus. It describes in detail the molecular mechanisms involved in the development and morphogenesis of the heart, lungs and ductus arteriosus, covering a range of topics such as gene functions, growth factors, transcription factors and cellular interactions, as well as stem cell engineering technologies. The book also presents recent advances in our understanding of the molecular mechanism of lung development, pulmonary hypertension and molecular regulation of the ductus arteriosus. As such, it is an ideal resource for physicians, scientists and investigators interested in the latest findings on the origins of congenital heart disease and potential future therapies involving pulmonary circulation/hypertension and the ductus arteriosus.
Improving our insights into the genetic predisposition to cardiovascular disease is one of the most important challenges in our field in the next millennium, not only to unravel the cause of disease but also to improve the selection of patients for particular treatments. Nowadays, for example, subjects with a cholesterol above a particular plasma level are exposed to a cholesterol lowering regime based upon the beneficial outcome of epidemiological studies which include subjects not prone to the disease, despite a plasma cholesterol above the accepted level. Identification of the patients who are genetically predisposed to the consequences of this disorder will reduce the number of subjects unnecessarily treated and, hence, the costs of health care. Because in most cardiovascular diseases the genetic component is a consequence of more than one gene defect, only limited progress has as yet been made in identifying subjects genetically at risk. For example, in hypertension only in less than 10% of the patients the genetic defect has been identified. It has been known for quite some time that in heart and blood vessels fetal genes are as high blood pressure and upregulated or induced when they are exposed to such disorders ischemia. Little is known about the function of these genes in the cardiac and vascular adaptation to these disorders; only guesses can be made.
This book gathers together contributions from internationally renowned authors in the field of cardiovascular systems and provides crucial insight into the importance of sex- and gender-concepts during the analysis of patient data. This innovative title is the first to offer the elements necessary to consider sex-related properties in both clinical and basic studies regarding the heart and circulation on multiscale levels (i.e. molecular, cellular, electrophysiologically, neuroendocrine, immunoregulatory, organ, allometric, and modeling). Observed differences at (ultra)cellular and organ level are quantified, with focus on clinical relevance and implications for diagnosis and patient management. Since the cardiovascular system is of vital importance for all tissues, Sex-Specific Analysis of Cardiovascular Function is an essential source of information for clinicians, biologists, and biomedical investigators. The wide spectrum of differences described in this book will also act as an eye-opener and serve as a handbook for students, teachers, scientists and practitioners.
This detailed book provides methodological information on cardiac gene delivery, from classic to state-of-the-art technologies and techniques. Efficient, cardiac-specific, and safe vectors, as well as refined vector delivery methods, are key for successful cardiac gene transfer and eventually for improving patients’ outcomes. Newer vectors and more efficient vector delivery methods have the potential to dramatically improve gene transduction efficacy, while novel gene manipulation techniques enforce the therapeutic power and broaden disease targets. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cardiac Gene Therapy: Methods and Protocols serves as a valuable tool for molecular biologists and physiologists in the cardiology field conducting cardiac gene transfer research, which will ultimately lead to further advancements in the vital field.
The pacemaking and conduction system (PCS) is vital for generating and synchronizing the heart beat. Dysfunction of this system can be a direct cause of cardiac conduction disturbance, arrhythmias and sudden cardiac death. A wealth of information has been collected over many years on the unique histological, morphological and phenotypic characteristics of specialized cardiac tissues. The cellular and molecular mechanisms that govern development of the PCS are now starting to be understood. This book draws together contributions from an international and interdisciplinary group of experts working on both basic and clinical aspects of cardiac development. It features reviews of the structure and function of the developing PCS, discussion of the molecular and cellular mechanisms regulating embryological development of this system and studies on the fundamental basis of PCS pathology. The book also considers how novel therapeutic interventions based on understanding of the developmental biology of cardiac pacemaking and conduction tissues might ultimately impact on clinical medicine.
Cardiovascular Diseases: Genetic Susceptibility, Environmental Factors and Their Interaction covers the special heritability characteristics and identifying genetic and environmental contributions to cardiovascular health. This important reference provides an overview of the genetic basis of cardiovascular disease and its risk factors. Included are important topics, ranging from lifestyle choices, risk factors, and exposure, to pollutants and chemicals. Also covered are the influences of Mendelian traits and familial aggregation and the interactions and interrelationships between genetics and environmental factors which, when compared, provide a sound understanding of the interplay between inherited and acquired risk factors. The book provides a much needed reference for this rapidly growing field of study. By combining the latest research within the structured chapters of this reference, a better understanding of genetic and environmental contribution to cardiovascular disease is found, helping to substantiate further investigations in the field and design prevention and treatment strategies. - Provides an overview of the genetic basis of cardiovascular disease and its risk factors - Reviews several large population-based studies which indicate that exposure to several environmental factors may increase CVD morbidity and mortality, exploring the plausibility of this association by data from animal studies - Reflects on future studies to help understanding the role of genes and environmental factors in the development and progression of cardiovascular disease
Development of the heart is a complex process and can lead to serious congenital disease if the process goes awry. This book provides a detailed description of the cell lineages involved in heart development and how their migration and morphogenesis are controlled. It also examines the genetic and environmental bases for congenital heart disease and how model systems are revealing more about the processes involved. Topics covered in this essential volume include: - Anatomy of a Developing Heart - Genetic and Epigenetic Control of Heart Development - Development of the Cardiac Conduction System - Genetic Basis of Human Congenital Heart Disease - In Vivo and In Vitro Genetic Models of Congenital Heart Disease
This open access book presents a comprehensive overview of dilated cardiomyopathy, providing readers with practical guidelines for its clinical management. The first part of the book analyzes in detail the disease’s pathophysiology, its diagnostic work up as well as the prognostic stratification, and illustrates the role of genetics and gene-environment interaction. The second part presents current and future treatment options, highlighting the importance of long-term and individualized treatments and follow-up. Furthermore, it discusses open issues, such as the apparent healing phenomenon, the early prognosis of arrhythmic events or the use of genetic testing in clinical practice. Offering a multidisciplinary approach for optimizing the clinical management of DCM, this book is an invaluable aid not only for the clinical cardiologists, but for all physicians involved in the care of this challenging disease.