This program addresses the hazards inherent in carbon monoxide generation and testing procedures. Additionally, it provides an overview of combustion analysis and the relation of building pressures to carbon monoxide generation. This training manual is broken into three sections: 1) Carbon Monoxide (CO) Explains: What CO is, how CO is produced, health effects of CO exposure, how to respond to an alarm, basic testing procedures, code compliance, and exposure standards. 2) Combustion: An in depth explanation of combustion analysis, troubleshooting, and remediation of CO production for both gas and oil fired appliances such as: boilers, furnaces, hot water heaters, clothes dryers, etc. 3) Pressure Measurements: A primer on how building pressures effect the distribution of carbon monoxide.
Public interest in the health impacts of carbon monoxide (CO) has been increasing rapidly during the past decade. And rightly so: it is the most ubiquitous environmental poison. Car exhaust fumes, furnaces, gas-powered engines, home water heaters, smoke from all types of fire, and tobacco smoke all contribute to carbon monoxide intoxication - the l
This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the toxic substances each profile describes. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The profiles focus on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance's relevant toxicological properties. Following the public health statement is information concerning levels of significant human exposure and, where known, significant health effects. A health effects summary describes the adequacy of information to determine a substance's health effects. ATSDR identifies data needs that are significant to protection of public health. Each profile: (A) Examines, summarizes, and interprets available toxicologic information and epidemiologic evaluations on a toxic substance to ascertain the levels of significant human exposure for the substance and the associated acute, subacute, and chronic health effects; (B) Determines whether adequate information on the health effects of each substance is available or being developed to determine levels of exposure that present a significant risk to human health of acute, subacute, and chronic health effects; and (C) Where appropriate, identifies toxicologic testing needed to identify the types or levels of exposure that may present significant risk of adverse health effects in humans.
This book is the eighth volume in the series Acute Exposure Guideline Levels for Selected Airborne Chemicals, and reviews AEGLs for acrolein, carbon monoxide, 1,2-dichloroethene, ethylenimine, fluorine, hydrazine, peracetic acid, propylenimine, and sulfur dioxide for scientific accuracy, completeness, and consistency with the NRC guideline reports.
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.
Provides the most current information and research available for performing risk assessments on exposed individuals and populations, giving guidance to public health authorities, primary care physicians, and industrial managers Reviews current knowledge on human exposure to selected chemical agents and physical factors in the ambient environment Updates and revises the previous edition, in light of current scientific literature and its significance to public health concerns Includes new chapters on: airline cabin exposures, arsenic, endocrine disruptors, and nanoparticles
Carbon monoxide (CO) is a toxic air pollutant produced largely from vehicle emissions. Breathing CO at high concentrations leads to reduced oxygen transport by hemoglobin, which has health effects that include impaired reaction timing, headaches, lightheadedness, nausea, vomiting, weakness, clouding of consciousness, coma, and, at high enough concentrations and long enough exposure, death. In recognition of those health effects, the U.S. Environmental Protection Agency (EPA), as directed by the Clean Air Act, established the health-based National Ambient Air Quality Standards (NAAQS) for CO in 1971. Most areas that were previously designated as "nonattainment" areas have come into compliance with the NAAQS for CO, but some locations still have difficulty in attaining the CO standards. Those locations tend to have topographical or meteorological characteristics that exacerbate pollution. In view of the challenges posed for some areas to attain compliance with the NAAQS for CO, congress asked the National Research Council to investigate the problem of CO in areas with meteorological and topographical problems. This interim report deals specifically with Fairbanks, Alaska. Fairbanks was chosen as a case study because its meteorological and topographical characteristics make it susceptible to severe winter inversions that trap CO and other pollutants at ground level.
During the oil embargo, in the winter 1973174, parts of Western Europe present ed an almost war-like aspect on Saturdays and Sundays: no traffic on the high ways, no crowds at ski resorts and other weekend entertainment places, no gaso line at the pumps. Living and teaching then in that part of the world, and discussing the situa tion with our students, we came to the conclusion that it would be timely to col lect the fine chemistry already known at the time in the field of conversion of coal to gasoline and other chemicals, and by this way help to draw the attention to this important alternative to crude oil. The idea of this book was born. The energy shock of the early seventies has been healthy and of great conse quences in chemistry. Large amounts of research money have been put to work since, and our knowledge of the possibilities and limitations of coal-based chemistry has increased enormously. During several years it appeared inap propriate to write a monograph about a topic which was in the midst of such an impetuous development. Nevertheless, we collected, and critically selected, the upcoming work as it appeared in the literature, and also tried to provide some modest input ourselves. Now, ten years later, the situation seems to be settled to a certain degree.
Metallosurfactants Provides up-to-date coverage of the synthesis, properties, and applications of metallosurfactants Metallosurfactants: From Fundamentals to Catalytic and Biomedical Applications is a thorough introduction to amphiphilic compounds that allow to incorporate metal ions in the surfactant system. This comprehensive reference and guide describes the fundamentals of metal surfactant complexes, highlights recent advances in the field, and explores current and future applications and research areas. Gradually progressing from basic to advanced topics, the authors first explain the classification and characterization of metallosurfactants before delving into more complex concepts and various catalytic, sensing, and biomedical applications. The book begins with coverage of the synthesis of metallosurfactants and their surface, interfacial, and aggregation behavior. Subsequent chapters discuss applications of metallosurfactants in areas such as drug delivery, molecular machines, transfection, nanoparticle synthesis, and carbon monoxide-releasing molecules (CORMs). Other topics include the use of metallosurfactants as catalysts in organic reactions, and as anticancer and antimicrobial agents in drug delivery and formulation. This unique reference Provides an overview of the structure-function relationship, synthesis methods, and characterization of metallosurfactants Reviews current trends in metallosurfactant development and research Examines the use of metallosurfactants in a wide range of reactions, including esterolytic reactions and hydrogen generation Discusses advanced applications of metallosurfactants, e.g. as nanoreactors for nanoparticle synthesis, non-viral transfection vectors, and sensors Metallosurfactants: From Fundamentals to Catalytic and Biomedical Applications is an excellent introduction to the growing field of metallosurfactant chemistry as well as a concise, highly useful reference for researchers and scientists in both academia and industry.