Diese Monographie bietet einen vollständigen Überblick über die Prinzipien und Anwendungen der Kapillarelektrophorese (CE) und der Massenspektrometrie (MS) und legt den Nachdruck insbesondere auf Kopplungsschnittstellen. Ausführlich erläutert werden auch alle relevanten Substanzklassen. Ein einzigartiges Wissenskompendium für alle, die sich CE-MS beschäftigen!
Capillary electrophoresis–mass spectrometry (CE-MS) has become a very useful analytical technique for the profiling of highly polar and charged metabolites in biological samples. In this book, the unique features of CE-MS for metabolomics studies are highlighted including CE separation modes, capillary coatings and practical aspects of CE-MS coupling alongside a comprehensive overview of recent technological developments and applications. CE-MS can be considered a relatively new technique in the field of metabolomics and it is therefore important to inform the scientific community about the possibilities of advanced CE-MS approaches for metabolomics studies. This book outlines the potential of this technique for researchers working in metabolomics, bioanalytics and biomarker analysis.
Amino Acid Analysis (AAA) is an integral part of analytical biochemistry. In a relatively short time, the variety of AAA methods has evolved dramatically with more methods shifting to the use of mass spectrometry (MS) as a detection method. Another new aspect is miniaturization. However, most importantly, AAA in this day and age should be viewed in the context of Metabolomics as a part of Systems Biology. Amino Acid Analysis: Methods and Protocols presents a broad spectrum of all available methods allowing for readers to choose the method that most suits their particular laboratory set-up and analytical needs. In this volume, a reader can find chapters describing general as well as specific approaches to the sample preparation. A number of chapters describe specific applications of AAA in clinical chemistry as well as in food analysis, microbiology, marine biology, drug metabolism, even archeology. Separate chapters are devoted to the application of AAA for protein quantitation and chiral AAA. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Amino Acid Analysis: Methods and Protocols provides crucial techniques that can be applied across multiple disciplines by anyone involved in biomedical research or life sciences.
The Handbook of Metabolic Phenotyping is the definitive work on the rapidly developing subject of metabolic phenotyping. It explores in detail the wide array of analytical chemistry and statistical modeling techniques used in the field, coupled with surveys of the various application areas in human development, nutrition, disease, therapy, and epidemiology to create a comprehensive exploration of the area of study. It covers recent studies that integrate the various -omics data sets to derive a systems biology view. It also addresses current issues on standardization, assay and statistics validation, and data storage and sharing. Written by experts with many years of practice in the field who pioneered many of the approaches widely used today, The Handbook of Metabolic Phenotyping is a valuable resource for postgrads and research scientists studying and furthering the field of metabolomics. - Contains theoretical and practical explanations of all the main analytical chemistry techniques used in metabolic phenotyping - Explores, in detail, the many diverse statistical approaches used in the field - Offers practical tips for successfully conducting metabolic phenotyping studies - Features reviews of all of the various fields of activity relating to human studies
Advanced Mass Spectrometry for Food Safety and Quality provides information on recent advancements made in mass spectrometry-based techniques and their applications in food safety and quality, also covering the major challenges associated with implementing these technologies for more effective identification of unknown compounds, food profiling, or candidate biomarker discovery. Recent advances in mass spectrometry technologies have uncovered tremendous opportunities for a range of food-related applications. However, the distinctive characteristics of food, such as the wide range of the different components and their extreme complexity present enormous challenges. This text brings together the most recent data on the topic, providing an important resource towards greater food safety and quality. - Presents critical applications for a sustainable, affordable and safe food supply - Covers emerging problems in food safety and quality with many specific examples. - Encompasses the characteristics, advantages, and limitations of mass spectrometry, and the current strategies in method development and validation - Provides the most recent data on the important topic of food safety and quality
Capillary Gel Electrophoresis and Related Microseparation Techniques covers all theoretical and practical aspects of capillary gel electrophoresis. It also provides an excellent overview of the key application areas of nucleic acid, protein and complex carbohydrate analysis, affinity-based methodologies, micropreparative aspects and related microseparation methods. It not only gives readers a better understanding of how to utilize this technology, but also provides insights into how to determine which method will provide the best technical solutions to particular problems. This book can also serve as a textbook for undergraduate and graduate courses in analytical chemistry, analytical biochemistry, molecular biology and biotechnology courses. - Covers all theoretical and practical aspects of capillary gel electrophoresis - Excellent overview of the key applications of nucleic acid, protein and complex carbohydrate analysis, affinity-based methodologies, micropreparative aspects and related microseparation methods - Teaches readers how to use the technology and select methods that are ideal for fundamental problems - Can serve as a textbook for undergraduate and graduate courses in analytical chemistry, analytical biochemistry, molecular biology and biotechnology courses
This book covers liquid chromatography, gas chromatography and capillary electrophoresis, the three main separation techniques lately available, applied to key omic sciences, such as genomics, proteomics, metabolomics and foodomics. The fundamentals of each technique are not covered herein. Instead, the recent advances in such techniques are presented focusing on the application to omics analyses and unique aspects in each case. This volume intends to offer wide ranging options available to researchers on omics sciences, and how to integrate them in order to achieve the comprehension of a biological system as a whole. Omic sciences have been of ultimate importance to comprehend the complex biochemical reactions and related events that occurs upon a biological system. The classical central dogma of molecular biology, which states that genetic information flows unidirectionally from DNA to RNA and then to proteins, has been gradually replaced by the systems biology approach. This book presents a multidisciplinary approach that explains the biological system as a whole, where the entire organism is influenced by a variety of internal events as well as by the environment, showing that each level of the biological information flux may influence the previous or the subsequent one.
Cancer metabolomics is a rapidly evolving field that aims for a comprehensive dissection of the metabolic phenotypes and functional network of metabolites in human cancers. State of the art metabolomics tools have been developed and applied to studying cancer metabolism and developing metabolic targets for improved diagnosis, prognosis and therapeutic treatment of human cancers. Chapters are written by subject experts in the field of cancer metabolomics with cross-disciplinary contributions. Coverage includes advanced metabolomics technologies and methodologies, including chemical isotope labelling liquid chromatography - mass spectrometry, capillary ion chromatography - mass spectrometry, 2-D gas chromatography – mass spectrometry, capillary electrophoresis – mass spectrometry, nuclear magnetic resonance spectroscopy, shotgun lipidomics, tracer-based metabolomics, microbial metabolomics, mass spectrometry imaging for single cell metabolomics and functional metabolomics. In addition, the book highlights new discoveries in cancer metabolism such as hypoxia inducible factor pathway, isocitrate dehydrogenase 1 mutation and oncometabolites. Finally, contributors focus on the translational applications of metabolomics in human cancers such as glioma, head and neck cancer, and gastric cancer. This new volume will be a unique reference source for cancer researchers and promote applications of metabolomics in understanding cancer metabolism.
Capillary Electromigration Separation Methods is a thorough, encompassing reference that not only defines the concept of contemporary practice, but also demonstrates its implementation in laboratory science. Chapters are authored by recognized experts in the field, ensuring that the content reflects the latest developments in research. Thorough, comprehensive coverage makes this the ideal reference for project planning, and extensive selected referencing facilitates identification of key information. The book defines the concept of contemporary practice in capillary electromigration separation methods, also discussing its applications in small mass ions, stereoisomers, and proteins. - Edited and authored by world-leading capillary electrophoresis experts - Presents comprehensive coverage on the subject - Includes extensive referencing that facilitates the identification of key research developments - Provides more than 50 figures and tables that aid in the retention of key concepts
Because new information was discovered at an incredible rate since the publication of the successful first edition of this Handbook, this fully updated second edition covers all areas of interest in the field of capillary electrophoresis (CE). A relatively new technology, CE is a principle method for studying the physicochemical properties of proteins, peptides, and other macromolecules. Where applicable, the 30 chapters provide basic underlying theories as well as application-oriented aspects of each technique.Keep up with all the developments in this growing field with the Handbook of Capillary Electrophoresis, Second Edition - a complete guide to the fundamentals of CE and the latest research. The chapters are organized into five units: Modes: Presents a theoretical development of the basic principles governing separation with several modes, including CEC, and discusses their practical aspects. Analyte: Applies CE to the analysis of a specific class of analytes, including organic and inorganic ions, pharmaceuticals, glycoconjugates, peptides, proteins, and DNA fragments. Fundamental Aspects of CE: Technique-oriented information for the practitioner, including the importance of the sample matrix, on-line preconcentration of samples, modes of detection, and specific aspects of CE data analysis. Applications of CE: Includes single cell analysis, CE in DNA sequencing, CE as a clinical diagnostic tool, identifying and quantifying drugs, and for characterizing interacting species. Specialized Aspects of CE: Discusses interfacing CE with mass spectrometry, high-volume throughput continuous CE, microchip CE, control of EOF, and much more. The Handbook of Capillary Electrophoresis, Second Edition, pulls together diverse areas and applications of CE, resulting in an excellent tool for scientists involved in biotechnology and clinical chemistry, as well as the pharmaceutical, bioscience, chemical, and instrument-manufacturing industries. With an applications-oriented focus, the handbook is also a superb manual for workshops, seminars, and graduate courses in separation science.