Signal Reconstruction Algorithms for Time-Interleaved ADCs

Signal Reconstruction Algorithms for Time-Interleaved ADCs

Author: Anu Kalidas Muralidharan Pillai

Publisher: Linköping University Electronic Press

Published: 2015-05-22

Total Pages: 100

ISBN-13: 9175190621

DOWNLOAD EBOOK

An analog-to-digital converter (ADC) is a key component in many electronic systems. It is used to convert analog signals to the equivalent digital form. The conversion involves sampling which is the process of converting a continuous-time signal to a sequence of discrete-time samples, and quantization in which each sampled value is represented using a finite number of bits. The sampling rate and the effective resolution (number of bits) are two key ADC performance metrics. Today, ADCs form a major bottleneck in many applications like communication systems since it is difficult to simultaneously achieve high sampling rate and high resolution. Among the various ADC architectures, the time-interleaved analog-to-digital converter (TI-ADC) has emerged as a popular choice for achieving very high sampling rates and resolutions. At the principle level, by interleaving the outputs of M identical channel ADCs, a TI-ADC could achieve the same resolution as that of a channel ADC but with M times higher bandwidth. However, in practice, mismatches between the channel ADCs result in a nonuniformly sampled signal at the output of a TI-ADC which reduces the achievable resolution. Often, in TIADC implementations, digital reconstructors are used to recover the uniform-grid samples from the nonuniformly sampled signal at the output of the TI-ADC. Since such reconstructors operate at the TI-ADC output rate, reducing the number of computations required per corrected output sample helps to reduce the power consumed by the TI-ADC. Also, as the mismatch parameters change occasionally, the reconstructor should support online reconfiguration with minimal or no redesign. Further, it is advantageous to have reconstruction schemes that require fewer coefficient updates during reconfiguration. In this thesis, we focus on reducing the design and implementation complexities of nonrecursive finite-length impulse response (FIR) reconstructors. We propose efficient reconstruction schemes for three classes of nonuniformly sampled signals that can occur at the output of TI-ADCs. Firstly, we consider a class of nonuniformly sampled signals that occur as a result of static timing mismatch errors or due to channel mismatches in TI-ADCs. For this type of nonuniformly sampled signals, we propose three reconstructors which utilize a two-rate approach to derive the corresponding single-rate structure. The two-rate based reconstructors move part of the complexity to a symmetric filter and also simplifies the reconstruction problem. The complexity reduction stems from the fact that half of the impulse response coefficients of the symmetric filter are equal to zero and that, compared to the original reconstruction problem, the simplified problem requires only a simpler reconstructor. Next, we consider the class of nonuniformly sampled signals that occur when a TI-ADC is used for sub-Nyquist cyclic nonuniform sampling (CNUS) of sparse multi-band signals. Sub-Nyquist sampling utilizes the sparsities in the analog signal to sample the signal at a lower rate. However, the reduced sampling rate comes at the cost of additional digital signal processing that is needed to reconstruct the uniform-grid sequence from the sub-Nyquist sampled sequence obtained via CNUS. The existing reconstruction scheme is computationally intensive and time consuming and offsets the gains obtained from the reduced sampling rate. Also, in applications where the band locations of the sparse multi-band signal can change from time to time, the reconstructor should support online reconfigurability. Here, we propose a reconstruction scheme that reduces the computational complexity of the reconstructor and at the same time, simplifies the online reconfigurability of the reconstructor. Finally, we consider a class of nonuniformly sampled signals which occur at the output of TI-ADCs that use some of the input sampling instants for sampling a known calibration signal. The samples corresponding to the calibration signal are used for estimating the channel mismatch parameters. In such TI-ADCs, nonuniform sampling is due to the mismatches between the channel ADCs and due to the missing input samples corresponding to the sampling instants reserved for the calibration signal. We propose three reconstruction schemes for such nonuniformly sampled signals and show using design examples that, compared to a previous solution, the proposed schemes require substantially lower computational complexity.


Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Author: Norbert Herencsar

Publisher: MDPI

Published: 2019-07-01

Total Pages: 194

ISBN-13: 3039210408

DOWNLOAD EBOOK

This Special Issue contains a series of excellent research works on telecommunications and signal processing, selected from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP) which was held on July 4–6, 2018, in Athens, Greece. The conference was organized in cooperation with the IEEE Region 8 (Europe, Middle East, and Africa), IEEE Greece Section, IEEE Czechoslovakia Section, and IEEE Czechoslovakia Section SP/CAS/COM Joint Chapter by seventeen universities from the Czech Republic, Hungary, Turkey, Taiwan, Japan, Slovak Republic, Spain, Bulgaria, France, Slovenia, Croatia, and Poland, for academics, researchers, and developers, and serves as a premier international forum for the annual exchange and promotion of the latest advances in telecommunication technology and signal processing. The aim of the conference is to bring together both novice and experienced scientists, developers, and specialists, to meet new colleagues, collect new ideas, and establish new cooperation between research groups from universities, research centers, and private sectors worldwide. This collection of 10 papers is highly recommended for researchers, and believed to be interesting, inspiring, and motivating for readers in their further research.


Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems

Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems

Author: Yu Lin

Publisher: Springer

Published: 2015-05-07

Total Pages: 124

ISBN-13: 3319176803

DOWNLOAD EBOOK

This book addresses the challenges of designing high performance analog-to-digital converters (ADCs) based on the “smart data converters” concept, which implies context awareness, on-chip intelligence and adaptation. Readers will learn to exploit various information either a-priori or a-posteriori (obtained from devices, signals, applications or the ambient situations, etc.) for circuit and architecture optimization during the design phase or adaptation during operation, to enhance data converters performance, flexibility, robustness and power-efficiency. The authors focus on exploiting the a-priori knowledge of the system/application to develop enhancement techniques for ADCs, with particular emphasis on improving the power efficiency of high-speed and high-resolution ADCs for broadband multi-carrier systems.


Advanced Data Converters

Advanced Data Converters

Author: Gabriele Manganaro

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 251

ISBN-13: 1139504746

DOWNLOAD EBOOK

Need to get up to speed quickly on the latest advances in high performance data converters? Want help choosing the best architecture for your application? With everything you need to know about the key new converter architectures, this guide is for you. It presents basic principles, circuit and system design techniques and associated trade-offs, doing away with lengthy mathematical proofs and providing intuitive descriptions upfront. Everything from time-to-digital converters to comparator-based/zero-crossing ADCs is covered and each topic is introduced with a short summary of the essential basics. Practical examples describing actual chips, along with extensive comparison between architectural or circuit options, ease architecture selection and help you cut design time and engineering risk. Trade-offs, advantages and disadvantages of each option are put into perspective with a discussion of future trends, showing where this field is heading, what is driving it and what the most important unanswered questions are.


Time-interleaved Analog-to-Digital Converters

Time-interleaved Analog-to-Digital Converters

Author: Simon Louwsma

Publisher: Springer Science & Business Media

Published: 2010-09-08

Total Pages: 148

ISBN-13: 9048197163

DOWNLOAD EBOOK

Time-interleaved Analog-to-Digital Converters describes the research performed on low-power time-interleaved ADCs. A detailed theoretical analysis is made of the time-interleaved Track & Hold, since it must be capable of handling signals in the GHz range with little distortion, and minimal power consumption. Timing calibration is not attractive, therefore design techniques are presented which do not require timing calibration. The design of power efficient sub-ADCs is addressed with a theoretical analysis of a successive approximation converter and a pipeline converter. It turns out that the first can consume about 10 times less power than the latter, and this conclusion is supported by literature. Time-interleaved Analog-to-Digital Converters describes the design of a high performance time-interleaved ADC, with much attention for practical design aspects, aiming at both industry and research. Measurements show best-inclass performance with a sample-rate of 1.8 GS/s, 7.9 ENOBs and a power efficiency of 1 pJ/conversion-step.


Analog Circuit Design

Analog Circuit Design

Author: Arthur H.M. van Roermund

Publisher: Springer Science & Business Media

Published: 2006-12-18

Total Pages: 409

ISBN-13: 1402051867

DOWNLOAD EBOOK

Analog Circuit Design contains eighteen tutorials, reflecting the contributions of six experts, as presented at the 15th workshop on Advances in Analog Circuit Design (AACD). Provides 18 overviews of analog circuit design in High-Speed A-D Converters, Automotive Electronics and Ultra-Low Power Wireless. An essential reference source for the latest developments in the field, tutorial coverage makes it suitable for advanced design courses.


CMOS Data Converters for Communications

CMOS Data Converters for Communications

Author: Mikael Gustavsson

Publisher: Springer Science & Business Media

Published: 2005-12-15

Total Pages: 394

ISBN-13: 0306473054

DOWNLOAD EBOOK

CMOS Data Converters for Communications distinguishes itself from other data converter books by emphasizing system-related aspects of the design and frequency-domain measures. It explains in detail how to derive data converter requirements for a given communication system (baseband, passband, and multi-carrier systems). The authors also review CMOS data converter architectures and discuss their suitability for communications. The rest of the book is dedicated to high-performance CMOS data converter architecture and circuit design. Pipelined ADCs, parallel ADCs with an improved passive sampling technique, and oversampling ADCs are the focus for ADC architectures, while current-steering DAC modeling and implementation are the focus for DAC architectures. The principles of the switched-current and the switched-capacitor techniques are reviewed and their applications to crucial functional blocks such as multiplying DACs and integrators are detailed. The book outlines the design of the basic building blocks such as operational amplifiers, comparators, and reference generators with emphasis on the practical aspects. To operate analog circuits at a reduced supply voltage, special circuit techniques are needed. Low-voltage techniques are also discussed in this book. CMOS Data Converters for Communications can be used as a reference book by analog circuit designers to understand the data converter requirements for communication applications. It can also be used by telecommunication system designers to understand the difficulties of certain performance requirements on data converters. It is also an excellent resource to prepare analog students for the new challenges ahead.


Nyquist AD Converters, Sensor Interfaces, and Robustness

Nyquist AD Converters, Sensor Interfaces, and Robustness

Author: Arthur H.M. van Roermund

Publisher: Springer Science & Business Media

Published: 2012-11-26

Total Pages: 291

ISBN-13: 1461445876

DOWNLOAD EBOOK

This book is based on the 18 presentations during the 21st workshop on Advances in Analog Circuit Design. Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.


High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications

High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications

Author: Weitao Li

Publisher: Springer

Published: 2017-08-01

Total Pages: 181

ISBN-13: 3319620126

DOWNLOAD EBOOK

This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.