This book is aimed at those in engineering/scientific fields who have never learned programming before but are eager to master the C language quickly so as to immediately apply it to problem solving in numerical analysis. The book skips unnecessary formality but explains all the important aspects of C essential for numerical analysis. Topics covered in numerical analysis include single and simultaneous equations, differential equations, numerical integration, and simulations by random numbers. In the Appendices, quick tutorials for gnuplot, Octave/MATLAB, and FORTRAN for C users are provided.
Learn applied numerical computing using the C programming language, starting with a quick primer on the C programming language and its SDK. This book then dives into progressively more complex applied math formula for computational methods using C with examples throughout and a larger, more complete application towards the end. Numerical C starts with the quadratic formula for finding solutions to algebraic equations that model things such as price vs. demand or rise vs. run or slip and more. Later in the book, you'll work on the augmented matrix method for simultaneous equations. You’ll also cover Monte Carlo method model objects that could arise naturally as part of the modeling of a real-life system, such as a complex road network, the transport of neutrons, or the evolution of the stock market. Furthermore, the Monte Carlo method of integration examines the area under a curve including rendering or ray tracing and the shading in a region. Furthermore, you'll work with the product moment correlation coefficient: correlation is a technique for investigating the relationship between two quantitative, continuous variables, for example, age and blood pressure. By the end of the book, you'll have a feeling for what computer software could do to help you in your work and apply some of the methods learned directly to your work. What You Will Learn Gain software and C programming basicsWrite software to solve applied, computational mathematics problems Create programs to solve equations and calculus problems Use the trapezium method, Monte Carlo method, line of best fit, product moment correlation coefficient, Simpson’s rule, and matrix solutions Write code to solve differential equations Apply one or more of the methods to an application case study Who This Book Is For Those with an existing knowledge of rudimentary mathematics (school level) and some basic programming experience. This is also important to people who may work in mathematics or other areas (for example, life sciences, engineering, or economics) and need to learn C programming.
Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.
Numerical Computation Using C is a four-chapter text guide for learning C language from the numerical analysis viewpoint. C is a general-purpose language that has been used in systems programming. The first chapter discusses the basic principles, logic, operators, functions, arrays, and structures of C language. The next two chapters deal with the uses of the so-called pointers in the C language, which is a variable that contains the address of some object in memory. These chapters also elaborate on several constructs to show how the use of C language can be fine-tuned. The last chapter highlights the practical aspects of C language. This book will be of value to computer scientists and mathematicians.
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become familiar with the MATLAB environment, and then you will begin to harness the power of MATLAB. You will learn the MATLAB language, starting with an introduction to variables, and how to manipulate numbers, vectors, matrices, arrays and character strings. You will learn about MATLAB’s high-precision capabilities, and how you can use MATLAB to solve problems, making use of arithmetic, relational and logical operators in combination with the common functions and operations of real and complex analysis and linear algebra. You will learn to implement various numerical methods for optimization, interpolation and solving non-linear equations. You will discover how MATLAB can solve problems in differential and integral calculus, both numerically and symbolically, including techniques for solving ordinary and partial differential equations, and how to graph the solutions in brilliant high resolution. You will then expand your knowledge of the MATLAB language by learning how to use commands which enable you to investigate the convergence of sequences and series, and explore continuity and other analytical features of functions in one and several variables.
A visual, interdisciplinary approach to solving problems in numerical methods Computing for Numerical Methods Using Visual C++ fills the need for a complete, authoritative book on the visual solutions to problems in numerical methods using C++. In an age of boundless research, there is a need for a programming language that can successfully bridge the communication gap between a problem and its computing elements through the use of visual-ization for engineers and members of varying disciplines, such as biologists, medical doctors, mathematicians, economists, and politicians. This book takes an interdisciplinary approach to the subject and demonstrates how solving problems in numerical methods using C++ is dominant and practical for implementation due to its flexible language format, object-oriented methodology, and support for high numerical precisions. In an accessible, easy-to-follow style, the authors cover: Numerical modeling using C++ Fundamental mathematical tools MFC interfaces Curve visualization Systems of linear equations Nonlinear equations Interpolation and approximation Differentiation and integration Eigenvalues and Eigenvectors Ordinary differential equations Partial differential equations This reader-friendly book includes a companion Web site, giving readers free access to all of the codes discussed in the book as well as an equation parser called "MyParser" that can be used to develop various numerical applications on Windows. Computing for Numerical Methods Using Visual C++ serves as an excellent reference for students in upper undergraduate- and graduate-level courses in engineering, science, and mathematics. It is also an ideal resource for practitioners using Microsoft Visual C++.
C Language Is The Popular Tool Used To Write Programs For Numerical Methods. Because Of The Importance Of Numerical Methods In Scientific Industrial And Social Research.C Language And Numerical Methods Is Taught Almost In All Graduate And Postgraduate Programs Of Engineering As Well As Science. In This Book, The Structures Of C Language Which Are Essential To Develop Numerical Methods Programs Are First Introduced In Chapters 1 To 7. These Concepts Are Explained With Appropriate Examples In A Simple Style. The Rest Of The Book Is Devoted For Numerical Methods. In Each Of The Topic On Numerical Methods, The Subject Is Presented In Four Steps, Namely, Theory, Numerical Examples And Solved Problems, Algorithms And Complete C Program With Computer Output Sheets. In Each Of These Chapters, A Number Of Solved Problems And Review Questions Are Given As A Drill Work On The Subject. In Appendix The Answers To Some Of The Review Questions Are Given.
The availability of high-speed digital computers has led to the widespread study of computer programming and numerical analysis in Indian universities and technological institutes. This book presents the theory and applications of numerical methods for the solution of various types of computational problems in science and engineering.