This Is A Small Handbook Intended For The Use Of Beginners In Homoeopathy And Families Who May Wish To Utilise Homoeopathic Remedies For Ordinary Ailments.
With comprehensive coverage of the language syntax, this guide teaches procedural and object-oriented programming to novice computer programmers. Each chapter features three example applications, including code fragments used to explain language syntax. Also includes substantial application development throughout.
The knitting pattern writer and founder of BomBella shares her love of bold colors with these colorwork techniques for sweaters, socks, blankets and more. In Beginner’s Guide to Colorwork Knitting, knit designer Ella Austin teaches all the techniques necessary to start knitting rich, vibrant and colorful patterns. Choose from brightly colored stripy socks and work your way up to a patterned beanie hat and even a stunning fair isle sweater. This easy to follow guide pairs projects with each new technique, building from Stripes to Slipped Stitches, Stranded Colorwork, Intarsia, Double Knitting, Modular Knitting, and Entrelac. Projects include blankets, scarves, shawls, bags, mitts, cushions, and more. Even if you can only knit and purl, this book will have you making gorgeous colorwork knits before you know it!
A Beginner's Guide to Microarrays addresses two audiences - the core facility manager who produces, hybridizes, and scans arrays, and the basic research scientist who will be performing the analysis and interpreting the results. User friendly coverage and detailed protocols are provided for the technical steps and procedures involved in many facets of microarray technology, including: -Cleaning and coating glass slides, -Designing oligonucleotide probes, -Constructing arrays for the detection and quantification of different bacterial species, -Preparing spotting solutions, -Troubleshooting spotting problems, -Setting up and running a core facility, -Normalizing background signal and controlling for systematic variance, -Designing experiments for maximum effect, -Analyzing data with statistical procedures, -Clustering data with machine-learning protocols.
This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.
This best-seller introduces readers to structural equation modeling (SEM) so they can conduct their own analysis and critique related research. Noted for its accessible, applied approach, chapters cover basic concepts and practices and computer input/output from the free student version of Lisrel 8.8 in the examples. Each chapter features an outline, key concepts, a summary, numerous examples from a variety of disciplines, tables, and figures, including path diagrams, to assist with conceptual understanding. The book first reviews the basics of SEM, data entry/editing, and correlation. Next the authors highlight the basic steps of SEM: model specification, identification, estimation, testing, and modification, followed by issues related to model fit and power and sample size. Chapters 6 through 10 follow the steps of modeling using regression, path, confirmatory factor, and structural equation models. Next readers find a chapter on reporting SEM research including a checklist to guide decision-making, followed by one on model validation. Chapters 13 through 16 provide examples of various SEM model applications. The book concludes with the matrix approach to SEM using examples from previous chapters. Highlights of the new edition include: A website with raw data sets for the book's examples and exercises so they can be used with any SEM program, all of the book's exercises, hotlinks to related websites, and answers to all of the exercises for Instructor’s only New troubleshooting tips on how to address the most frequently encountered problems Examples now reference the free student version of Lisrel 8.8 Expanded coverage of advanced models with more on multiple-group, multi-level, & mixture modeling (Chs. 13 & 15), second-order and dynamic factor models (Ch. 14), and Monte Carlo methods (Ch. 16) Increased coverage of sample size and power (Ch. 5) and reporting research (Ch. 11) New journal article references help readers better understand published research (Chs. 13 – 17) and 25 % new exercises with answers to half in the book for student review. Designed for introductory graduate level courses in structural equation modeling or factor analysis taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. An understanding of correlation is assumed. To access the website visit the book page or the Textbook Resource page at http://www.psypress.com/textbook-resources/ for more details.
R programming is an efficient tool for statistical analysis of data. Data science has become critical to each field and the popularity of R is skyrocketing. Organization as large and diverse as Google, Facebook, Microsoft, Bank of America, Ford Motor Company, Mozilla, Thomas Cook, The New York Times, The National Weather Service, Twitter, ANZ Bank, Uber, Airbnb etc . have turned to R for reporting, analyzing and visualization of data, this book is for students and professionals of Mathematics, Statistics, Physics, Chemistry, Biology, Social Science and Medicine, Business, Engineering, Software, Information Technology, Sales, Bio Informatics, Pharmacy and any one, where data needs to be analyzed and represented graphically.
The perfect Christmas gift for a young person. In this new book co-authored with son James Whittaker Noel teaches young people how to get going, how to increase their income and how to invest their money.
This book A Beginner’s Guide to Learning Analytics is designed to meet modern educational trends’ needs. It is addressed to readers who have no prior knowledge of learning analytics and functions as an introductory text to learning analytics for those who want to do more with evaluation/assessment in their organizations. The book is useful to all who need to evaluate their learning and teaching strategies. It aims to bring greater efficiency and deeper engagement to individual students, learning communities, and educators. Covered here are the key concepts linked to learning analytics for researchers and practitioners interested in learning analytics. This book helps those who want to apply analytics to learning and development programs and helps educational institutions to identify learners who require support and provide a more personalized learning experience. Like chapters show diverse uses of learning analytics to enhance student and faculty performance. It presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different educational domains. This book provides educators and researchers with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This book will be a valuable addition to researchers’ bookshelves.