Business Intelligence Guidebook

Business Intelligence Guidebook

Author: Rick Sherman

Publisher: Newnes

Published: 2014-11-04

Total Pages: 551

ISBN-13: 0124115284

DOWNLOAD EBOOK

Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.


Business Intelligence Roadmap

Business Intelligence Roadmap

Author: Larissa Terpeluk Moss

Publisher: Addison-Wesley Professional

Published: 2003

Total Pages: 582

ISBN-13: 9780201784206

DOWNLOAD EBOOK

This software will enable the user to learn about business intelligence roadmap.


Business Intelligence For Dummies

Business Intelligence For Dummies

Author: Swain Scheps

Publisher: John Wiley & Sons

Published: 2011-02-04

Total Pages: 395

ISBN-13: 1118051416

DOWNLOAD EBOOK

You're intelligent, right? So you've already figured out that Business Intelligence can be pretty valuable in making the right decisions about your business. But you’ve heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more. You’ll find out how to: Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you’re the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision.


Data Virtualization for Business Intelligence Systems

Data Virtualization for Business Intelligence Systems

Author: Rick van der Lans

Publisher: Elsevier

Published: 2012-07-25

Total Pages: 297

ISBN-13: 0123944252

DOWNLOAD EBOOK

Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.


Successful Business Intelligence: Secrets to Making BI a Killer App

Successful Business Intelligence: Secrets to Making BI a Killer App

Author: Cindi Howson

Publisher: McGraw Hill Professional

Published: 2007-12-17

Total Pages: 258

ISBN-13: 0071596143

DOWNLOAD EBOOK

Praise for Successful Business Intelligence "If you want to be an analytical competitor, you've got to go well beyond business intelligence technology. Cindi Howson has wrapped up the needed advice on technology, organization, strategy, and even culture in a neat package. It's required reading for quantitatively oriented strategists and the technologists who support them." --Thomas H. Davenport, President's Distinguished Professor, Babson College and co-author, Competing on Analytics "When used strategically, business intelligence can help companies transform their organization to be more agile, more competitive, and more profitable. Successful Business Intelligence offers valuable guidance for companies looking to embark upon their first BI project as well as those hoping to maximize their current deployments." --John Schwarz, CEO, Business Objects "A thoughtful, clearly written, and carefully researched examination of all facets of business intelligence that your organization needs to know to run its business more intelligently and exploit information to its fullest extent." --Wayne Eckerson, Director, TDWI Research "Using real-world examples, Cindi Howson shows you how to use business intelligence to improve the performance, and the quality, of your company." --Bill Baker, Distinguished Engineer & GM, Business Intelligence Applications, Microsoft Corporation "This book outlines the key steps to make BI an integral part of your company's culture and demonstrates how your company can use BI as a competitive differentiator." --Robert VanHees, CFO, Corporate Express "Given the trend to expand the business analytics user base, organizations are faced with a number of challenges that affect the success rate of these projects. This insightful book provides practical advice on improving that success rate." --Dan Vesset, Vice President, Business Analytics Solution Research, IDC


Healthcare Business Intelligence, + Website

Healthcare Business Intelligence, + Website

Author: Laura Madsen

Publisher: John Wiley & Sons

Published: 2012-09-04

Total Pages: 336

ISBN-13: 1118217802

DOWNLOAD EBOOK

Solid business intelligence guidance uniquely designed for healthcare organizations Increasing regulatory pressures on healthcare organizations have created a national conversation on data, reporting and analytics in healthcare. Behind the scenes, business intelligence (BI) and data warehousing (DW) capabilities are key drivers that empower these functions. Healthcare Business Intelligence is designed as a guidebook for healthcare organizations dipping their toes into the areas of business intelligence and data warehousing. This volume is essential in how a BI capability can ease the increasing regulatory reporting pressures on all healthcare organizations. Explores the five tenets of healthcare business intelligence Offers tips for creating a BI team Identifies what healthcare organizations should focus on first Shows you how to gain support for your BI program Provides tools and techniques that will jump start your BI Program Explains how to market and maintain your BI Program The risk associated with doing BI/DW wrong is high, and failures are well documented. Healthcare Business Intelligence helps you get it right, with expert guidance on getting your BI program started and successfully keep it going.


Data Governance

Data Governance

Author: John Ladley

Publisher: Academic Press

Published: 2019-11-08

Total Pages: 352

ISBN-13: 0128158328

DOWNLOAD EBOOK

Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition


The Practitioner's Guide to Data Quality Improvement

The Practitioner's Guide to Data Quality Improvement

Author: David Loshin

Publisher: Elsevier

Published: 2010-11-22

Total Pages: 423

ISBN-13: 0080920349

DOWNLOAD EBOOK

The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.


Fundamentals of Business Intelligence

Fundamentals of Business Intelligence

Author: Wilfried Grossmann

Publisher: Springer

Published: 2015-06-02

Total Pages: 361

ISBN-13: 3662465310

DOWNLOAD EBOOK

This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.


Data Science Without Makeup

Data Science Without Makeup

Author: Mikhail Zhilkin

Publisher: CRC Press

Published: 2021-11-01

Total Pages: 195

ISBN-13: 1000464806

DOWNLOAD EBOOK

- The book shows you what 'data science' actually is and focuses uniquely on how to minimize the negatives of (bad) data science - It discusses the actual place of data science in a variety of companies, and what that means for the process of data science - It provides ‘how to’ advice to both individuals and managers - It takes a critical approach to data science and provides widely-relatable examples