This book assesses the Department of Energy's Environmental Management Science Program--a new program that funds basic research related to environmental cleanup of the department's weapons complex. The authoring committee was established to advise the department on the structure and management of the program. The book provides recommendations on long-term challenges and opportunities for the program.
This book assesses the Department of Energy's Environmental Management Science Programâ€"a new program that funds basic research related to environmental cleanup of the department's weapons complex. The authoring committee was established to advise the department on the structure and management of the program. The book provides recommendations on long-term challenges and opportunities for the program.
This book assesses the Department of Energy's Environmental Management Science Programâ€"a new program that funds basic research related to environmental cleanup of the department's weapons complex. The authoring committee was established to advise the department on the structure and management of the program. The book provides recommendations on long-term challenges and opportunities for the program.
Research Needs in Subsurface Science provides an overview of the subsurface contamination problems across the DOE complex and shows by examples from the six largest DOE sites (Hanford Site, Idaho Engineering and Environmental Laboratory, Nevada Test Site, Oak Ridge Reservation, Rocky Flats Environmental Technology Site, and Savannah River Site) how advances in scientific and engineering knowledge can improve the effectiveness of the cleanup effort. This report analyzes the current Environmental Management (EM) Science Program portfolio of subsurface research projects to assess the extent to which the program is focused on DOE's contamination problems. This analysis employs an organizing scheme that provides a direct linkage between basic research in the EM Science Program and applied technology development in DOE's Subsurface Contaminants Focus Area. Research Needs in Subsurface Science also reviews related research programs in other DOE offices and other federal agencies (see Chapter 4) to determine the extent to which they are focused on DOE's subsurface contamination problems. On the basis of these analyses, this report singles out the highly significant subsurface contamination knowledge gaps and research needs that the EM Science Program must address if the DOE cleanup program is to succeed.
It is now becoming clear that relatively few U.S. Department of Energy (DOE) waste sites will be cleaned up to the point where they can be released for unrestricted use. "Long-term stewardship" (activities to protect human health and the environment from hazards that may remain at its sites after cessation of remediation) will be required for over 100 of the 144 waste sites under DOE control (U.S. Department of Energy, 1999). After stabilizing wastes that remain on site and containing them as well as is feasible, DOE intends to rely on stewardship for as long as hazards persistâ€"in many cases, indefinitely. Physical containment barriers, the management systems upon which their long-term reliability depends, and institutional controls intended to prevent exposure of people and the environment to the remaining site hazards, will have to be maintained at some DOE sites for an indefinite period of time. The Committee on Remediation of Buried and Tank Wastes finds that much regarding DOE's intended reliance on long-term stewardship is at this point problematic. The details of long-term stewardship planning are yet to be specified, the adequacy of funding is not assured, and there is no convincing evidence that institutional controls and other stewardship measures are reliable over the long term. Scientific understanding of the factors that govern the long-term behavior of residual contaminants in the environment is not adequate. Yet, the likelihood that institutional management measures will fail at some point is relatively high, underscoring the need to assure that decisions made in the near term are based on the best available science. Improving institutional capabilities can be expected to be every bit as difficult as improving scientific and technical ones, but without improved understanding of why and how institutions succeed and fail, the follow-through necessary to assure that long-term stewardship remains effective cannot reliably be counted on to occur. Long-Term Institutional Management of U.S. Department of Energy Legacy Waste Sites examines the capabilities and limitations of the scientific, technical, and human and institutional systems that compose the measures that DOE expects to put into place at potentially hazardous, residually contaminated sites.
Environmental Science for Environmental Management has quickly established itself as the leading introduction to environmental science, demonstrating how a more environmental science can create an effective approach to environmental management on different spatial scales. Since publication of the first edition, environmentalism has become an increasing concern on the global political agenda. Following the Rio Conference and meetings on population, social justice, women, urban settlement and oceans, civil society has increasingly promoted the cause of a more radical agenda, ranging from rights to know, fair trade, social empowerment, social justice and civil rights for the oppressed, as well as novel forms of accounting and auditing. This new edition is set in the context of a changing environmentalism and a challenged science. It builds on the popularity and applicability of the first edition and has been fully revised and updated by the existing writing team from the internationally renowned School of Environmental Science at the University of East Anglia. Environmental Science for Environmental Management is an essential text for for undergraduate students of environmental science, environmental management, planning and geography. It is invaluable supplementary reading for environmental biology and environmental chemistry courses, as well as for engineering, economics and business studies.
In recent years more cultural institutions in hot and humid climates have been installing air-conditioning systems to protect their collections and provide comfort for both employees and visitors. This practice, however, can pose complications, including problems of installation and maintenance as well as structural damage to buildings, while failing to provide collections with a viable conservation environment. This volume offers hands-on guidance to the specific challenges involved in conserving cultural heritage in hot and humid climates. Initial chapters present scientific and geographic overviews of these climates, outline risk-based classifications for environmental control, and discuss related issues of human health and comfort. The authors then describe climate management strategies that offer effective and reliable alternatives to conventional air-conditioning systems and that require minimal intervention to the historic fabric of buildings that house collections. The book concludes with seven case studies of successful climate improvement projects undertaken by the Getty Conservation Institute in collaboration with cultural institutions around the world. Appendixes include a unit conversion table, a glossary, and a full bibliography. This book is an essential tool for cultural heritage conservators and museum curators, as well as other professionals involved in the design, construction, and maintenance of museums and other buildings housing cultural heritage collections in hot and humid climates. “It is absolutely right that conservation be in step with the socio-political context surrounding environmentally sound approaches. This text does that, and does it well. The authors have, admirably, been awarded the 2016 Prose Award for Environmental Science, and they are to be congratulated for producing a text that is seen as having an impact outside of the conservation sphere. The technical theory that underpins the text is accessible, and the solutions borne out through the case studies do present as being admirably pragmatic.”— Journal of the Institute of Conservation
In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.