Performance-based Seismic Bridge Design

Performance-based Seismic Bridge Design

Author: M. Lee Marsh

Publisher: Transportation Research Board

Published: 2013

Total Pages: 138

ISBN-13: 0309223806

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.


Computational Analysis and Design of Bridge Structures

Computational Analysis and Design of Bridge Structures

Author: Chung C. Fu

Publisher: CRC Press

Published: 2014-12-11

Total Pages: 632

ISBN-13: 1466579854

DOWNLOAD EBOOK

Gain Confidence in Modeling Techniques Used for Complicated Bridge StructuresBridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of ana


Design and Construction of Bridge Approaches

Design and Construction of Bridge Approaches

Author: Harvey E. Wahls

Publisher: Transportation Research Board

Published: 1990

Total Pages: 56

ISBN-13: 9780309049054

DOWNLOAD EBOOK

Includes case histories of the Dumbarton Bridge (San Francisco Bay, Calif.), the Rainier Avenue Embankment (Seattle, Wash.) and the Gallows Road Grade Separation (Fairfax, Va.)


Seismic Design and Assessment of Bridges

Seismic Design and Assessment of Bridges

Author: Andreas J. Kappos

Publisher: Springer Science & Business Media

Published: 2012-04-18

Total Pages: 232

ISBN-13: 9400739427

DOWNLOAD EBOOK

The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.


Perspectives on European Earthquake Engineering and Seismology

Perspectives on European Earthquake Engineering and Seismology

Author: Atilla Ansal

Publisher: Springer

Published: 2015-08-28

Total Pages: 458

ISBN-13: 3319169645

DOWNLOAD EBOOK

This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.


Bridge Engineering Handbook, Second Edition

Bridge Engineering Handbook, Second Edition

Author: Wai-Fah Chen

Publisher: CRC Press

Published: 2014-01-24

Total Pages: 742

ISBN-13: 1439852189

DOWNLOAD EBOOK

Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, as well as the various types of bridges. The text includes over 2,500 tables, charts, illustrations, and photos. The book covers new, innovative and traditional methods and practices; explores rehabilitation, retrofit, and maintenance; and examines seismic design and building materials. The fourth book, Seismic Design contains 18 chapters, and covers seismic bridge analysis and design. What’s New in the Second Edition: Includes seven new chapters: Seismic Random Response Analysis, Displacement-Based Seismic Design of Bridges, Seismic Design of Thin-Walled Steel and CFT Piers, Seismic Design of Cable-Supported Bridges, and three chapters covering Seismic Design Practice in California, China, and Italy Combines Seismic Retrofit Practice and Seismic Retrofit Technology into one chapter called Seismic Retrofit Technology Rewrites Earthquake Damage to Bridges and Seismic Design of Concrete Bridges chapters Rewrites Seismic Design Philosophies and Performance-Based Design Criteria chapter and retitles it as Seismic Bridge Design Specifications for the United States Revamps Seismic Isolation and Supplemental Energy Dissipation chapter and retitles it as Seismic Isolation Design for Bridges This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.


Design of Modern Highway Bridges

Design of Modern Highway Bridges

Author: Narendra Taly

Publisher: McGraw-Hill Companies

Published: 1998

Total Pages: 1376

ISBN-13:

DOWNLOAD EBOOK

This text provides an introduction to the theory and practice of designing modern highway bridge superstructures. Beginning with the history of bridges, it describes various types of bridge superstructures, materials of construction, bridge loadings, and analysis techniques for various types.