Breakup of Liquid Sheets and Jets

Breakup of Liquid Sheets and Jets

Author: S. P. Lin

Publisher: Cambridge University Press

Published: 2003-08-21

Total Pages: 287

ISBN-13: 1139439782

DOWNLOAD EBOOK

This book, first published in 2003, is an exposition of what we knew about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are carefully explained. Physical concepts are established through rigorous mathematics, accurate numerical analyses and comparison of theory with experiment. Exercises are provided for students, and these help familiarize the reader with the required mathematical tools. This book further provides a rational basis for designing equipment and processes involving the phenomena of sheet and jet breakup. Researchers interested in transition to turbulence, hydrodynamic stability or combustion will find this book a highly useful resource, whether their background lies in engineering, physics, chemistry, biology, medicine or applied mathematics.


Handbook of Atomization and Sprays

Handbook of Atomization and Sprays

Author: Nasser Ashgriz

Publisher: Springer Science & Business Media

Published: 2011-02-18

Total Pages: 922

ISBN-13: 1441972641

DOWNLOAD EBOOK

Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.


Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment

Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment

Author: Leonardo Di G. Sigalotti

Publisher: Springer Science & Business Media

Published: 2014-01-11

Total Pages: 550

ISBN-13: 3319001914

DOWNLOAD EBOOK

The book presents a collection of selected papers from the I Workshop of the Venezuelan Society of Fluid Mechanics held on Margarita Island, Venezuela from November 4 to 9, 2012. Written by experts in their respective fields, the contributions are organized into five parts: - Part I Invited Lectures, consisting of full-length technical papers on both computational and experimental fluid mechanics covering a wide range of topics from drops to multiphase and granular flows to astrophysical flows, - Part II Drops, Particles and Waves - Part III Multiphase and Multicomponent Flows - Part IV Atmospheric and Granular Flows - and Part V Turbulent and Astrophysical Flows. The book is intended for upper-level undergraduate and graduate students as well as for physicists, chemists and engineers teaching and working in the field of fluid mechanics and its applications. The contributions are the result of recent advances in theoretical and experimental research in fluid mechanics, encompassing both fundamentals as well as applications to fluid engineering design, including pipelines, turbines, flow separators, hydraulic systems and biological fluid elements, and to granular, environmental and astrophysical flows.


Atomization and Sprays

Atomization and Sprays

Author: Arthur H. Lefebvre

Publisher: CRC Press

Published: 2017-03-27

Total Pages: 284

ISBN-13: 1498736262

DOWNLOAD EBOOK

The second edition of this long-time bestseller provides a framework for designing and understanding sprays for a wide array of engineering applications. The text contains correlations and design tools that can be easily understood and used in relating the design of atomizers to the resulting spray behavior. Written to be accessible to readers with a modest technical background, the emphasis is on application rather than in-depth theory. Numerous examples are provided to serve as starting points for using the information in the book. Overall, this is a thoroughly updated edition that still retains the practical focus and readability of the original work by Arthur Lefebvre.


Scaling, Self-similarity, and Intermediate Asymptotics

Scaling, Self-similarity, and Intermediate Asymptotics

Author: G. I. Barenblatt

Publisher: Cambridge University Press

Published: 1996-12-12

Total Pages: 412

ISBN-13: 9780521435222

DOWNLOAD EBOOK

Scaling laws reveal the fundamental property of phenomena, namely self-similarity - repeating in time and/or space - which substantially simplifies the mathematical modelling of the phenomena themselves. This book begins from a non-traditional exposition of dimensional analysis, physical similarity theory, and general theory of scaling phenomena, using classical examples to demonstrate that the onset of scaling is not until the influence of initial and/or boundary conditions has disappeared but when the system is still far from equilibrium. Numerous examples from a diverse range of fields, including theoretical biology, fracture mechanics, atmospheric and oceanic phenomena, and flame propagation, are presented for which the ideas of scaling, intermediate asymptotics, self-similarity, and renormalisation were of decisive value in modelling.


Collision Phenomena in Liquids and Solids

Collision Phenomena in Liquids and Solids

Author: Alexander L. Yarin

Publisher: Cambridge University Press

Published: 2017-06-15

Total Pages: 629

ISBN-13: 1107147905

DOWNLOAD EBOOK

A unique and in-depth discussion uncovering the unifying features of collision phenomena in liquids and solids, along with applications.


Breakup of Liquid Sheets and Jets

Breakup of Liquid Sheets and Jets

Author: Sung-Piau Lin

Publisher:

Published: 2003

Total Pages: 269

ISBN-13: 9780511308246

DOWNLOAD EBOOK

The theme of this book is an exposition of what we know about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are also carefully explained. Physical concepts are established through rigorous mathematics, accurate numerical analyses and comparison of theory with experiment.


Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Author: Grétar Tryggvason

Publisher: Cambridge University Press

Published: 2011-03-10

Total Pages: 337

ISBN-13: 1139496700

DOWNLOAD EBOOK

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.


Internal Combustion Processes of Liquid Rocket Engines

Internal Combustion Processes of Liquid Rocket Engines

Author: Zhen-Guo Wang

Publisher: John Wiley & Sons

Published: 2016-05-17

Total Pages: 396

ISBN-13: 1118890043

DOWNLOAD EBOOK

This book concentrates on modeling and numerical simulations of combustion in liquid rocket engines, covering liquid propellant atomization, evaporation of liquid droplets, turbulent flows, turbulent combustion, heat transfer, and combustion instability. It presents some state of the art models and numerical methodologies in this area. The book can be categorized into two parts. Part 1 describes the modeling for each subtopic of the combustion process in the liquid rocket engines. Part 2 presents detailed numerical methodology and several representative applications in simulations of rocket engine combustion.