This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
This book contains the lecture courses conducted at the School of the Theoretical Advanced Study Institute (TASI, Colorado, USA) on Elementary Particle Physics in 2002. In this School, three series of lectures are presented in parallel in the area of phenomenology, TeV-scale physics, and astroparticles physics. The phenomenology lecture series covered a broad spectrum of standard research techniques used to interpret present day and future collider data. The TeV-scale physics lecture series focused on modern speculations about physics beyond the Standard Model, with an emphasis on supersymmetry and extra-dimensional theories. The lecture series on astroparticle physics treated recent developments in theories of dark matter and dark energy, the cosmic microwave background, and prospects for the upcoming era of gravitational wave astronomy.
Yi-Shi Duan (1927-2016) was one of the world-renowned pioneers in the study of gauge field theory and general relativity. Trained in the former Soviet Union, Prof. Duan returned to China in 1957 to work in Lanzhou University for 60 years. In 1963, he came up with a general co-variant form of the conservation law of the energy-momentum tensor in general relativity. In 1979, he suggested that the gauge potential could be decomposed, which has important implications to gauge field theory. He trained in China a big team of talents in theoretical physics. His contributions to theoretical physics in China have earned him praise from both Professor Shiing-Shen Chern and Professor Chen-Ning Yang.
More than fifty years after his death, Albert Einstein's vital engagement with the world continues to inspire others, spurring conversations, projects, and research, in the sciences as well as the humanities. Einstein for the 21st Century shows us why he remains a figure of fascination. In this wide-ranging collection, eminent artists, historians, scientists, and social scientists describe Einstein's influence on their work, and consider his relevance for the future. Scientists discuss how Einstein's vision continues to motivate them, whether in their quest for a fundamental description of nature or in their investigations in chaos theory; art scholars and artists explore his ties to modern aesthetics; a music historian probes Einstein's musical tastes and relates them to his outlook in science; historians explore the interconnections between Einstein's politics, physics, and philosophy; and other contributors examine his impact on the innovations of our time. Uniquely cross-disciplinary, Einstein for the 21st Century serves as a testament to his legacy and speaks to everyone with an interest in his work. The contributors are Leon Botstein, Lorraine Daston, E. L. Doctorow, Yehuda Elkana, Yaron Ezrahi, Michael L. Friedman, Jürg Fröhlich, Peter L. Galison, David Gross, Hanoch Gutfreund, Linda D. Henderson, Dudley Herschbach, Gerald Holton, Caroline Jones, Susan Neiman, Lisa Randall, Jürgen Renn, Matthew Ritchie, Silvan S. Schweber, and A. Douglas Stone.
This book covers some recent advances in string theory and extra dimensions. Intended mainly for advanced graduate students in theoretical physics, it presents a rare combination of formal and phenomenological topics, based on the annual lectures given at the School of the Theoretical Advanced Study Institute (2001) a traditional event that brings together graduate students in high energy physics for an intensive course of advanced learning. The lecturers in the School are leaders in their fields.The first lecture, by E D'Hoker and D Freedman, is a systematic introduction to the gauge-gravity correspondence, focusing in particular on correlation functions in the conformal case. The second, by L Dolan, provides an introduction to perturbative string theory, including recent advances on backgrounds involving Ramond-Ramond fluxes. The third, by S Gubser, explains some of the basic facts about special holonomy and its uses in string theory and M-theory. The fourth, by J Hewett, surveys the TeV phenomenology of theories with large extra dimensions. The fifth, by G Kane, presents the case for supersymmetry at the weak scale and some of its likely experimental consequences. The sixth, by A Liddle, surveys recent developments in cosmology, particularly with regard to recent measurements of the CMB and constraints on inflation. The seventh, by B Ovrut, presents the basic features of heterotic M-theory, including constructions that contain the Standard Model. The eighth, by K Rajagopal, explains the recent advances in understanding QCD at low temperatures and high densities in terms of color superconductivity. The ninth, by M Sher, summarizes grand unified theories and baryogenesis, including discussions of supersymmetry breaking and the Standard Model Higgs mechanism. The tenth, by M Spiropulu, describes collider physics, from a survey of current and future machines to examples of data analyses relevant to theories beyond the Standard Model. The eleventh, by M Strassler, is an introduction to supersymmetric gauge theory, focusing on Wilsonian renormalization and analogies between three- and four-dimensional theories. The twelfth, by W Taylor and B Zwiebach, introduces string field theory and discusses recent advances in understanding open string tachyon condensation. The thirteenth, by D Waldram, discusses explicit model building in heterotic M-theory, emphasizing the role of the 8 gauge fields.The written presentation of these lectures is detailed yet straightforward, and they will be of use to both students and experienced researchers in high-energy theoretical physics for years to come.The proceedings have been selected for coverage in: Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings) CC Proceedings Engineering & Physical Sciences"
The book gives a comprehensive introduction for interested general readers, into the development and structure of concepts, ideas and theory formation about the elementary building blocks of matter, the forces with which these particles interact and about the fundamental nature of space itself. Einsteins theory of the cosmos and the recent discovery of the presence of a dark energy which leads to an accelerated expansion of cosmic space, provide the background for the most astonishing recent developments in the search for the origin of space and matter. The String-Theory revolution has led to the notion that nature may not follow one unique set of laws to build worlds, but that innumerable many possible universes may exist, that worlds may be emerging and disappearing like biological species and that our existence may be extraordinarily rare and therefore precious. An introduction to the concept of emergence in self-organizing systems is given to make the connection to the idea that Emergence may be the inherent creative property of space and matter at the quantum level.
This book presents reviews and new findings in the field of the very early universe, where the interests of particle theorists and astrophysicists meet. Also, WIMP search experiments are reported.
This volume provides a fascinating snapshot of the future of physics, covering fundamental physics, at the frontiers of research. It comprises a wide variety of contributions from leading thinkers in the field, inspired by the pioneering work of John A. Wheeler. Quantum theory represents a unifying theme within the book, along with topics such as the nature of physical reality, the arrow of time, models of the universe, superstrings, gravitational radiation, quantum gravity and cosmic inflation. Attempts to formulate a final unification of physics are discussed, along with the existence of hidden dimensions of space, space-time singularities, hidden cosmic matter, and the strange world of quantum technology.
"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.