This book is devoted to the non-linear theory of the collective interaction between a modulated beam of relativistic charged particles and narrow electromagnetic and Langmuir wave packets in plasma or gas slow-wave systems. Regular oscillations excited by a relativistic beam under the conditions of Cherenkov resonance and the anomalous Doppler effect can be used to generate coherent microwave radiation and accelerate charged particles in plasma.
This volume presents the non-linear theory of electrostatic focusing of an electron beam split into bunches under conditions when the plasma permittivity at the modulation frequency is negative and the effective Coulomb force acting on the electron bunches is reversed. Conditions for the spatial equilibrium between the bunch and plasma emission, as well as the dynamics of the formation of focussed bunches, are confirmed by solving (both analytically and numerically) the self-consistent set of equations.
This book covers the fundamentals of and new developments in gaseous Bosendash;Einstein condensation. It begins with a review of fundamental concepts and theorems, and introduces basic theories describing Bose-Einstein condensation (BEC). It then discusses some recent topics such as fast-rotating BEC, spinor and dipolar BEC, low-dimensional BEC, balanced and imbalanced fermionic superfluidity including BCS-BEC crossover and unitary gas, and p-wave superfluidity.
This book provides a new understanding of the large amount of experimental results gained in solid state physics during the last seven decades. For more than 160 different materials, data analyses shown in terms of atomistic models (Hamiltonians) have not provided a quantitatively satisfactory description of either excitation spectra or dynamic properties. Instead, the experimental evidences have elaborated that field theories are necessary. However, most experimentalists are not familiar with field theories, and realistic field theories of magnetism are absent.The book illustrates in an empirical way the elements of future field theories of solid state physics with special emphasis on magnetic materials. In contrast to the many available textbooks on quantum field theories that emphasize more on algorithmic formalities rather than referring to the experimental facts, the approach in this book is pragmatic instead of abstract theoretic. This methodical concept considerably facilitates experimentalists to get acquainted with the basic ideas of field theories, even if a ready field theory is not provided by this experimental study.
Applied physics is rooted in the fundamental truths and basic concepts of the physical sciences but is concerned with the utilization of these scientific principles in practical devices and systems. This new and important book gathers the latest research from around the globe in this dynamic field.
This book is dedicated to the memory of the great theoretical physicist and Nobel laureate, Lev Davidovich Landau (1908-1968) on the occasion of his centenary. The book brings together 15 papers by international authors, who cover several core aspects of the modern development of Landau's legacy and achievements.