Boosting (in)direct Detection of Dark Matter

Boosting (in)direct Detection of Dark Matter

Author: Lina Necib

Publisher:

Published: 2017

Total Pages: 178

ISBN-13:

DOWNLOAD EBOOK

In this thesis, I study the expected direct and indirect detection signals of dark matter. More precisely, I study three aspects of dark matter; I use hydrodynamic simulations to extract properties of weakly interacting dark matter that are relevant for both direct and indirect detection signals, and construct viable dark matter models with interesting experimental signatures. First, I analyze the full scale Illustris simulation, and find that Galactic indirect detection signals are expected to be largely symmetric, while extragalactic signals are not, due to recent mergers and the presence of substructure. Second, through the study of the high resolution Milky Way simulation Eris, I find that metal-poor halo stars can be used as tracers for the dark matter velocity distribution. I use the Sloan Digital Sky Survey to obtain the first empirical velocity distribution of dark matter, which weakens the expected direct detection limits by up to an order of magnitude at masses


Dark Matter Dynamics and Indirect Detection

Dark Matter Dynamics and Indirect Detection

Author:

Publisher:

Published: 2005

Total Pages: 17

ISBN-13:

DOWNLOAD EBOOK

Non-baryonic, or ''dark'', matter is believed to be a major component of the total mass budget of the universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


Searching for Dark Matter with the ATLAS Detector

Searching for Dark Matter with the ATLAS Detector

Author: Steven Schramm

Publisher: Springer

Published: 2016-11-23

Total Pages: 341

ISBN-13: 3319444530

DOWNLOAD EBOOK

This thesis describes the search for Dark Matter at the LHC in the mono-jet plus missing transverse momentum final state, using the full dataset recorded in 2012 by the ATLAS Experiment. It is the first time that the number of jets is not explicitly restricted to one or two, thus increasing the sensitivity to new signals. Instead, a balance between the most energetic jet and the missing transverse momentum is required, thus selecting mono-jet-like final states. Collider searches for Dark Matter have typically used signal models employing effective field theories (EFTs), even when comparing to results from direct and indirect detection experiments, where the difference in energy scale renders many such comparisons invalid. The thesis features the first robust and comprehensive treatment of the validity of EFTs in collider searches, and provides a means by which the different classifications of Dark Matter experiments can be compared on a sound and fair basis.


Boosted Dark Matter Signals Uplifted with Self-interaction

Boosted Dark Matter Signals Uplifted with Self-interaction

Author:

Publisher:

Published: 2015

Total Pages: 11

ISBN-13:

DOWNLOAD EBOOK

We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.


The Role of Halo Substructure in Gamma-Ray Dark Matter Searches

The Role of Halo Substructure in Gamma-Ray Dark Matter Searches

Author: Miguel A. Sánchez-Conde

Publisher: MDPI

Published: 2020-05-28

Total Pages: 220

ISBN-13: 3039360442

DOWNLOAD EBOOK

An important, open research topic today is to understand the relevance that dark matter halo substructure may have for dark matter searches. In the standard cosmological model, halo substructure or subhalos are predicted to be largely abundant inside larger halos, for example, galaxies such as ours, and are thought to form first and later merge to form larger structures. Dwarf satellite galaxies—the most massive exponents of halo substructure in our own galaxy—are already known to be excellent targets for dark matter searches, and indeed, they are constantly scrutinized by current gamma-ray experiments in the search for dark matter signals. Lighter subhalos not massive enough to have a visible counterpart of stars and gas may be good targets as well, given their typical abundances and distances. In addition, the clumpy distribution of subhalos residing in larger halos may boost the dark matter signals considerably. In an era in which gamma-ray experiments possess, for the first time, the exciting potential to put to test the preferred dark matter particle theories, a profound knowledge of dark matter astrophysical targets and scenarios is mandatory should we aim for accurate predictions of dark matter-induced fluxes for investing significant telescope observing time on selected targets and for deriving robust conclusions from our dark matter search efforts. In this regard, a precise characterization of the statistical and structural properties of subhalos becomes critical. In this Special Issue, we aim to summarize where we stand today on our knowledge of the different aspects of the dark matter halo substructure; to identify what are the remaining big questions, and how we could address these; and, by doing so, to find new avenues for research.