Blow-Up in Nonlinear Equations of Mathematical Physics

Blow-Up in Nonlinear Equations of Mathematical Physics

Author: Maxim Olegovich Korpusov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-08-06

Total Pages: 348

ISBN-13: 3110602075

DOWNLOAD EBOOK

The present book carefully studies the blow-up phenomenon of solutions to partial differential equations, including many equations of mathematical physics. The included material is based on lectures read by the authors at the Lomonosov Moscow State University, and the book is addressed to a wide range of researchers and graduate students working in nonlinear partial differential equations, nonlinear functional analysis, and mathematical physics. Contents Nonlinear capacity method of S. I. Pokhozhaev Method of self-similar solutions of V. A. Galaktionov Method of test functions in combination with method of nonlinear capacity Energy method of H. A. Levine Energy method of G. Todorova Energy method of S. I. Pokhozhaev Energy method of V. K. Kalantarov and O. A. Ladyzhenskaya Energy method of M. O. Korpusov and A. G. Sveshnikov Nonlinear Schrödinger equation Variational method of L. E. Payne and D. H. Sattinger Breaking of solutions of wave equations Auxiliary and additional results


Blow-up in Nonlinear Sobolev Type Equations

Blow-up in Nonlinear Sobolev Type Equations

Author: Alexander B. Al'shin

Publisher: Walter de Gruyter

Published: 2011-05-26

Total Pages: 661

ISBN-13: 3110255294

DOWNLOAD EBOOK

The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The abstract results apply to a large variety of problems. Thus, the well-known Benjamin-Bona-Mahony-Burgers equation and Rosenau-Burgers equations with sources and many other physical problems are considered as examples. Moreover, the method proposed for studying blow-up phenomena for nonlinear Sobolev-type equations is applied to equations which play an important role in physics. For instance, several examples describe different electrical breakdown mechanisms in crystal semiconductors, as well as the breakdown in the presence of sources of free charges in a self-consistent electric field. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.


Blow-up Theories for Semilinear Parabolic Equations

Blow-up Theories for Semilinear Parabolic Equations

Author: Bei Hu

Publisher: Springer Science & Business Media

Published: 2011-03-23

Total Pages: 137

ISBN-13: 3642184596

DOWNLOAD EBOOK

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.


Blow-Up in Quasilinear Parabolic Equations

Blow-Up in Quasilinear Parabolic Equations

Author: A. A. Samarskii

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 561

ISBN-13: 3110889862

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)


Nonlinear Wave Equations

Nonlinear Wave Equations

Author: Walter A. Strauss

Publisher: American Mathematical Soc.

Published: 1990-01-12

Total Pages: 106

ISBN-13: 0821807250

DOWNLOAD EBOOK

The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.


Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2014-09-22

Total Pages: 565

ISBN-13: 1482251736

DOWNLOAD EBOOK

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book


Nonlinear Evolution Equations

Nonlinear Evolution Equations

Author: Michael G. Crandall

Publisher:

Published: 1978

Total Pages: 282

ISBN-13:

DOWNLOAD EBOOK

This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.


Blowup for Nonlinear Hyperbolic Equations

Blowup for Nonlinear Hyperbolic Equations

Author: Serge Alinhac

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 125

ISBN-13: 1461225787

DOWNLOAD EBOOK

Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as blowup. In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it.


Explosive Instabilities in Mechanics

Explosive Instabilities in Mechanics

Author: Brian Straughan

Publisher: Springer Science & Business Media

Published: 1998-06-22

Total Pages: 216

ISBN-13: 9783540635895

DOWNLOAD EBOOK

This book deals with explosive instabilities in mechanics, deriving a solution to a system of PDEs that arise in practical situations. It begins with a relatively simple account of blow-up in systems of interaction-diffusion equations. Among the topics presented are: classical fluid equations, catastrophic behavior in nonlinear fluid theories, blow-up in Volterra equations, and rapid energy growth in parallel flows.


Methods of Wave Theory in Dispersive Media

Methods of Wave Theory in Dispersive Media

Author: Mikhail Viktorovich Kuzelev

Publisher: World Scientific

Published: 2010

Total Pages: 271

ISBN-13: 981426170X

DOWNLOAD EBOOK

Ch. 1. Linear harmonic waves in dispersive systems. Initial-value problem and problem with an external source. 1. Harmonic waves in dispersive systems. 2. Initial-value problem. Eigenmode method. 3. Characteristic function of the state vector. Dispersion operator. 4. Laplace transform method -- ch. 2. A case study of linear waves in dispersive media. 5. Transverse electromagnetic waves in an isotropic dielectric. 6. Longitudinal electrostatic waves in a cold isotropic plasma. Collisional dissipation of plasma waves. 7. Transverse electromagnetic waves in a cold isotropic plasma. Dissipation of transverse waves in a plasma. 8. Electromagnetic waves in metals. 9. Electromagnetic waves in a waveguide with an isotropic dielectric. 10. Longitudinal waves in a hot isotropic plasma. Electron diffusion in a plasma. 11. Longitudinal waves in an isotropic degenerate plasma. Waves in a quantum plasma. 12. Ion acoustic waves in a nonisothermal plasma. Ambipolar diffusion. 13. Electromagnetic waves in a waveguide with an anisotropic plasma in a strong external magnetic field. 14. Electromagnetic waves propagating in a magnetized electron plasma along a magnetic field. 15. Electrostatic waves propagating in a magnetized electron plasma at an angle to a magnetic field. 16. Magnetohydrodynamic waves in a conducting fluid. 17. Acoustic waves in crystals. 18. Longitudinal electrostatic waves in a one-dimensional electron beam. 19. Beam instability in a plasma. 20. Instability of a current-carrying plasma -- ch. 3. Linear waves in coupled media. Slow amplitude method. 21. Coupled oscillator representation and slow amplitude method. 22. Beam-plasma system in the coupled oscillator representation. 23. Basic equations of microwave electronics. 24. Resonant Buneman instability in a current-carrying plasma in the coupled oscillator representation. 25. Dispersion function and wave absorption in dissipative systems. 26. Some effects in the interaction between waves in coupled systems. 27. Waves and their interaction in periodic structures -- ch. 4. Nonharmonic waves in dispersive media. 28. General solution to the initial-value problem. 29. Quasi-harmonic approximation. Group velocity. 30. Pulse spreading in equilibrium dispersive media. 31. Stationary-phase method. 32. Some problems for wave equations with a source -- ch. 5. Nonharmonic waves in nonequilibrium media. 33. Pulse propagation in nonequilibrium media. 34. Stationary-phase method for complex frequencies. 35. Quasi-harmonic approximation in the theory of interaction of electron beams with slowing-down media -- ch. 6. Theory of instabilities. 36. Convective and absolute instabilities. First criterion for the type of instability. 37. Saddle-point method. Second criterion for the type of instability. 38. Third Criterion for the type of instability. 39. Type of beam instability in the interaction with a slowed wave of zero group velocity in a medium. 40. Calculation of the Green's functions of unstable systems -- ch. 7. Hamiltonian method in the theory of electromagnetic radiation in dispersive media. 41. Equations for the excitation of transverse electromagnetic field oscillators. 42. Dipole radiation. 43. Radiation from a moving dipole - undulator radiation. 44. Cyclotron radiation. 45. Cherenkov effect. Anomalous and normal doppler effects. 46. Application of the Hamiltonian method to the problem of the excitation of longitudinal waves