Block-oriented Nonlinear System Identification

Block-oriented Nonlinear System Identification

Author: Fouad Giri

Publisher: Springer Science & Business Media

Published: 2010-08-18

Total Pages: 425

ISBN-13: 1849965129

DOWNLOAD EBOOK

Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.


Identification of Nonlinear Systems Using Neural Networks and Polynomial Models

Identification of Nonlinear Systems Using Neural Networks and Polynomial Models

Author: Andrzej Janczak

Publisher: Springer Science & Business Media

Published: 2004-11-18

Total Pages: 220

ISBN-13: 9783540231851

DOWNLOAD EBOOK

This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.


Block-oriented Nonlinear System Identification

Block-oriented Nonlinear System Identification

Author: Fouad Giri

Publisher: Springer

Published: 2010-09-22

Total Pages: 425

ISBN-13: 1849965137

DOWNLOAD EBOOK

Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.


Identification of Linear Systems

Identification of Linear Systems

Author: J. Schoukens

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 353

ISBN-13: 0080912567

DOWNLOAD EBOOK

This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.


Nonparametric System Identification

Nonparametric System Identification

Author: Wlodzimierz Greblicki

Publisher: Cambridge University Press

Published: 2012-10-04

Total Pages: 0

ISBN-13: 9781107410626

DOWNLOAD EBOOK

Presenting a thorough overview of the theoretical foundations of non-parametric system identification for nonlinear block-oriented systems, this books shows that non-parametric regression can be successfully applied to system identification, and it highlights the achievements in doing so. With emphasis on Hammerstein, Wiener systems, and their multidimensional extensions, the authors show how to identify nonlinear subsystems and their characteristics when limited information exists. Algorithms using trigonometric, Legendre, Laguerre, and Hermite series are investigated, and the kernel algorithm, its semirecursive versions, and fully recursive modifications are covered. The theories of modern non-parametric regression, approximation, and orthogonal expansions, along with new approaches to system identification (including semiparametric identification), are provided. Detailed information about all tools used is provided in the appendices. This book is for researchers and practitioners in systems theory, signal processing, and communications and will appeal to researchers in fields like mechanics, economics, and biology, where experimental data are used to obtain models of systems.


Nonlinear System Identification

Nonlinear System Identification

Author: Stephen A. Billings

Publisher: John Wiley & Sons

Published: 2013-07-29

Total Pages: 611

ISBN-13: 1118535553

DOWNLOAD EBOOK

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.


Combined Parametric-Nonparametric Identification of Block-Oriented Systems

Combined Parametric-Nonparametric Identification of Block-Oriented Systems

Author: Grzegorz Mzyk

Publisher: Springer

Published: 2013-11-20

Total Pages: 245

ISBN-13: 3319035967

DOWNLOAD EBOOK

This book considers a problem of block-oriented nonlinear dynamic system identification in the presence of random disturbances. This class of systems includes various interconnections of linear dynamic blocks and static nonlinear elements, e.g., Hammerstein system, Wiener system, Wiener-Hammerstein ("sandwich") system and additive NARMAX systems with feedback. Interconnecting signals are not accessible for measurement. The combined parametric-nonparametric algorithms, proposed in the book, can be selected dependently on the prior knowledge of the system and signals. Most of them are based on the decomposition of the complex system identification task into simpler local sub-problems by using non-parametric (kernel or orthogonal) regression estimation. In the parametric stage, the generalized least squares or the instrumental variables technique is commonly applied to cope with correlated excitations. Limit properties of the algorithms have been shown analytically and illustrated in simple experiments.


Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems

Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems

Author: Han-Xiong Li

Publisher: Springer Science & Business Media

Published: 2011-02-24

Total Pages: 175

ISBN-13: 940070741X

DOWNLOAD EBOOK

The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.


Nonlinear System Identification

Nonlinear System Identification

Author: Oliver Nelles

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 785

ISBN-13: 3662043238

DOWNLOAD EBOOK

Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.


Nonlinear Process Control

Nonlinear Process Control

Author: Michael A. Henson

Publisher: Prentice Hall

Published: 1997

Total Pages: 460

ISBN-13:

DOWNLOAD EBOOK

Nonlinear Process Control assembles the latest theoretical and practical research on design, analysis and application of nonlinear process control strategies. It presents detailed coverage of all three major elements of nonlinear process control: identification, controller design, and state estimation. Nonlinear Process Control reflects the contributions of eleven leading researchers in the field. It is an ideal textbook for graduate courses in process control, as well as a concise, up-to-date reference for control engineers.