Thermotropic Liquid Crystal Polymer Blends

Thermotropic Liquid Crystal Polymer Blends

Author: Francesco Paolo La Mantia

Publisher: CRC Press

Published: 1993-12-04

Total Pages: 196

ISBN-13: 9780877629603

DOWNLOAD EBOOK

In recent years, studies by both industry and academic researchers have opened the door to improving performance and reducing costs of these new materials. The particular structure and morphology of LCPs, as well as their peculiar rheological behavior, have stimulated researchers to develop new theoretical models and new characterization and processing techniques to more fully understand and utilize LCPs. Although the scientific literature is very rich in data on the synthetic techniques and on the relations between structure and phase behavior of these new polymers, the understanding of the rheological and processing aspects is still far from satisfactory-particularly in the case of LCP blends. In fact, although an appreciable number of patents and scientific papers have appeared describing the phase behavior, the rheology, and the mechanical properties of many of these polyblends, several aspects of the relations between processing and morphology, and between morphology and properties of these materials are still obscure or even controversial. Now, this new book, written by leading researchers, provides an up-to-date guide and reference to the processing, rheology and applications of pure LCPs and LCP blends. The book concisely reviews the synthetic procedures for the production of LCPs and discusses the rheological behavior and processing methods. Plus, the book examines present and future applications areas of LCPs and LCP blends.


Thermotropic Liquid Crystal Polymers

Thermotropic Liquid Crystal Polymers

Author: Tai-Shung Chung

Publisher: CRC Press

Published: 2001-03-01

Total Pages: 392

ISBN-13: 9781420012521

DOWNLOAD EBOOK

Liquid crystal polymers are sometimes called super polymers--with good reason. Their wide range of exceptional properties and ease of processing make them design candidates for many demanding applications. This new book provides a thorough review of LCP technology with the emphasis on the chemistry, synthesis and characterization of the material in its many variants. Additional chapters cover processing and applications. From the Editor's Preface The field of thermotropic liquid crystalline polymers has grown substantially in the last two decades, with fundamental research, publications, commercial products, and patents. In the 1980's, Dr. Ralph Miano led my colleagues and me at Hoechst Celanese in commercializing the first thermotropic liquid crystalline polymers, based on Dr. Gordon Calundann's composition patents. Today, more than seven companies have produced thermotropic liquid crystalline polymer materials, with at least 50 variants available. Hence, it is timely to compile a comprehensive review on the nature of this type of material and the ongoing progress in this field.... The goals of this book are to summarize previous work, provide new insights into this class of polymers, and add to the understanding of the formation of liquid crystallinity. This book covers a wide range of topics and addresses different disciplines in the field. The chapters are arranged as a learning scheme for the professional, from basic science to applied engineering. The first few chapters summarize the syntheses of various polyester, polyester-amid, and polyimide liquid crystalline polymers. The science and origins of liquid crystal formation are revealed. Next, we introduce the characterizations of these materials by their different chemical and physical aspects. Because most commercially available thermotropic liquid crystalline polymers have been used in the form of composites, we have also incorporated a chapter on polymer blends, detailing blending mechanisms and resultant properties. Two chapters on thermosetting liquid crystalline polymers integrate them with other topics, because of their unique importance and their applications for microelectronics and packaging. The final chapter deals with the engineering and processing aspects of thermoplastic liquid crystalline polymers for a variety of applications.


Advances in Thermotropic Liquid Crystal Polymers

Advances in Thermotropic Liquid Crystal Polymers

Author: Tai-shung Chung

Publisher:

Published: 2001

Total Pages: 378

ISBN-13: 9780367800864

DOWNLOAD EBOOK

Annotation Liquid crystal polymers are sometimes called super polymers--with good reason. Their wide range of exceptional properties and ease of processing make them design candidates for many demanding applications. This new book provides a thorough review of LCP technology with the emphasis on the chemistry, synthesis and characterization of the material in its many variants. Additional chapters cover processing and applications. From the Editor's Preface The field of thermotropic liquid crystalline polymers has grown substantially in the last two decades, with fundamental research, publications, commercial products, and patents. In the 1980's, Dr. Ralph Miano led my colleagues and me at Hoechst Celanese in commercializing the first thermotropic liquid crystalline polymers, based on Dr. Gordon Calundann's composition patents. Today, more than seven companies have produced thermotropic liquid crystalline polymer materials, with at least 50 variants available. Hence, it is timely to compile a comprehensive review on the nature of this type of material and the ongoing progress in this field€. The goals of this book are to summarize previous work, provide new insights into this class of polymers, and add to the understanding of the formation of liquid crystallinity. This book covers a wide range of topics and addresses different disciplines in the field. The chapters are arranged as a learning scheme for the professional, from basic science to applied engineering. The first few chapters summarize the syntheses of various polyester, polyester-amid, and polyimide liquid crystalline polymers. The science and origins of liquid crystal formation are revealed. Next, we introduce the characterizations of these materials by their different chemical and physical aspects. Because most commercially available thermotropic liquid crystalline polymers have been used in the form of composites, we have also incorporated a chapter on polymer blends, detailing blending mechanisms and resultant properties. Two chapters on thermosetting liquid crystalline polymers integrate them with other topics, because of their unique importance and their applications for microelectronics and packaging. The final chapter deals with the engineering and processing aspects of thermoplastic liquid crystalline polymers for a variety of applications.


Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems

Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems

Author: Sabu Thomas

Publisher: William Andrew

Published: 2015-09-22

Total Pages: 444

ISBN-13: 032339454X

DOWNLOAD EBOOK

Design and Applications of Nanostructured Polymer Blend and Nanocomposite Systems offers readers an intelligent, thorough introduction to the design and applications of this new generation of designer polymers with customized properties. The book assembles and covers, in a unified way, the state-of-the-art developments of this less explored type of material. With a focus on nanostructured polymer blends, the book discusses the science of nanostructure formation and the potential performance benefits of nanostructured polymer blends and composites for applications across many sectors: electronics, coatings, adhesives, energy (photovoltaics), aerospace, automotive, and medical devices (biocompatible polymers). The book also describes the design, morphology, and structure of nanostructured polymer composites and blends to achieve specific properties. - Covers all important information for designing and selecting the right nanostructured polymer system - Provides specialized knowledge on self-repairing, nanofibre and nanostructured multiphase materials, as well as evaluation and testing of nanostructured polymer systems - Serves as a reference guide for development of new products in industries ranging from electronics, coatings, and energy, to transport and medical applications - Describes the design, morphology, and structure of nanostructured polymer composites and blends to achieve specific properties


Polymer Blends and Alloys

Polymer Blends and Alloys

Author: George P. Simon

Publisher: Routledge

Published: 2019-07-16

Total Pages: 766

ISBN-13: 1351423622

DOWNLOAD EBOOK

Distinguishing among blends, alloys and other types of combinations, clarifying terminology and presenting data on new processes and materials, this work present up-to-date and effective compounding techniques for polymers. It offers extensive analyses on the challenging questions that surround miscibility, compatibility, dynamic processing, interaction/phase behaviour, and computer simulations for predicting behaviours of polymer mixture and interaction.


Liquid Crystalline Polymers

Liquid Crystalline Polymers

Author: Vijay Kumar Thakur

Publisher: Springer

Published: 2015-08-25

Total Pages: 536

ISBN-13: 3319202707

DOWNLOAD EBOOK

This book introduces various applications of liquid crystalline polymers as the emerging new class of high performance novel materials. The authors detail the advantageous properties of these LCs including optical anisotropic, transparency and easy control over structure. This interdisciplinary work includes valuable input from international projects with special focus on the use of liquid crystalline polymers and/or nanocomposites.


Rheology of Polymer Blends and Nanocomposites

Rheology of Polymer Blends and Nanocomposites

Author: Sabu Thomas

Publisher: Elsevier

Published: 2019-09-08

Total Pages: 326

ISBN-13: 0128169567

DOWNLOAD EBOOK

Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications focuses on rheology in polymer nanocomposites. It provides readers with a solid grounding in the fundamentals of rheology, with an emphasis on recent advancements. Chapters explore potential future applications for nanocomposites and polymer blends, giving readers a thorough understanding of the specific features derived from rheology as a tool for the study of polymer blends and nanocomposites. This book is ideal for industrial and academic researchers in the field of polymer blends and nanocomposites, but is also a great resource for anyone who wants to learn about the applications of rheology. - Sets out the principles of rheology as it is applied to polymer blends and nanocomposites - Demonstrates how rheological techniques are best applied to different classes of nanocomposites - Assesses the opportunities and major challenges of rheological approaches to polymer blends and nanocomposites


High Temperature Polymer Blends

High Temperature Polymer Blends

Author: Mark T. DeMeuse

Publisher: Elsevier

Published: 2014-03-25

Total Pages: 233

ISBN-13: 0857099019

DOWNLOAD EBOOK

Polymer blends offer properties not easily obtained through the use of a single polymer, including the ability to withstand high temperatures. High Temperature Polymer Blends outlines the characteristics, developments, and use of high temperature polymer blends. The first chapter introduces high temperature polymer blends, their general principles, and thermodynamics. Further chapters go on to deal with the characterization of high temperature polymer blends for specific uses, such as fuel cells and aerospace applications. The book discusses different types of high temperature polymer blends, including liquid crystal polymers, polysulfones, and polybenzimidazole polymer blends and their commercial applications. High Temperature Polymer Blends provides a key reference for material scientists, polymer scientists, chemists, and plastic engineers, as well as academics in these fields. - Reviews characterization methods and analysis of the thermodynamic properties of high temperature polymer blends - Reviews the use of materials such as liquid crystals as reinforcements as well as applications in such areas as energy and aerospace engineering


Polymer Blends

Polymer Blends

Author: L.A. Utracki

Publisher: iSmithers Rapra Publishing

Published: 2000

Total Pages: 180

ISBN-13: 9781859572306

DOWNLOAD EBOOK

This report begins by summarising the basis of polymer blending. This includes an outline of the techniques being used to characterise blends including spectroscopic techniques and rheometry. The types of polymer blends which have been studied are outlined. Methods of compatibilisation are discussed. The morphology of the phases in a blend is critical to property development - the types of morphology observed are described. Flow-induced morphology is described. Processing of blends and the effects on morphology are discussed including extrusion, thermoforming, blow moulding, injection moulding and foaming. The accompanying abstracts from the Rapra Polymer Library database provide useful further information and indicate sources of additional material.


Reactive Polymers Fundamentals and Applications

Reactive Polymers Fundamentals and Applications

Author: Johannes Karl Fink

Publisher: William Andrew

Published: 2013-04-11

Total Pages: 559

ISBN-13: 1455731587

DOWNLOAD EBOOK

The use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process—these in turn cause changes in performance and properties. Material selection and control of the reaction are essential to acheive optimal performance. The second edition of Reactive Polymers Fundamentals and Applications introduces engineers and scientists to the range of reactive polymers available, explains the reactions that take place, and details applications and performance benefits. Basic principles and industrial processes are described for each class of reactive resin (thermoset), as well as additives, the curing process, and applications and uses. The initial chapters are devoted to individual resin types (e.g. epoxides, cyanacrylates, etc.); followed by more general chapters on topics such as reactive extrusion and dental applications. Material new to this edition includes the most recent developments, applications and commercial products for each chemical class of thermosets, as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers, and case studies. Injection molding of reactive polymers, radiation curing, thermosetting elastomers, and reactive extrusion equipment are all covered as well. - Most comprehensive source of information about reactive polymers - Covers basics as well as most recent developments, including reactive biopolymers, recycling of reactive polymers, nanocomposites, and fluorosilicones - Indispensable guide for engineers and advanced students alike—providing extensive literature and patent review