This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spectacular outfl ows (winds and jets) generated by black hole accretion.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
This book contains a set of articles based on a session of the annual meeting of the American Association for the Advancement of Science held in San Francisco in February, 1974. The reason for the meeting arose from the need to communicate to the largest possible scientific community the dramatic advances which have been made in recent years in the understanding of collapsed objects: neutron stars and black holes. Thanks to an unprecedented resonance between X-ray, y-ray, radio and optical astronomy and important new theoretical developments in relativistic astro physics, a new deep understanding has been acquired of the physical processes oc curring in the late stages of evolution of stars. This knowledge may be one of the greatest conquests of man's understanding of nature in this century. This book aims to give an essential and up-to-date view in this field. The analysis of the physics and astrophysics of neutron stars and black holes is here attacked from both theoretical and experimental points of view. In the experimental field we range from the reviews and catalogues of galactic X-ray sources (R. Gursky and E. Schreier) and pulsars (E. Groth) to the observations of the optical counter part of X-ray sources (P. Boynton) to finally the recently discovered gamma-ray bursts (I. Strong) and pulse astronomy R. B. Partridge).
In this masterfully written and brilliantly informed work, Dr. Rhorne, the Feynman Professor of Theoretical Physics at Caltech, leads readers through an elegant, always human, tapestry of interlocking themes, answering the great question: what principles control our universe and why do physicists think they know what they know? Features an introduction by Stephen Hawking.
The award-winning science writer “packs a lot of learning into a deceptively light and enjoyable read” exploring the contentious history of the black hole (New Scientist). For more than half a century, physicists and astronomers engaged in heated dispute over the possibility of black holes in the universe. The strange notion of a space-time abyss from which not even light escapes seemed to confound all logic. Now Marcia Bartusiak, author of Einstein’s Unfinished Symphony and The Day We Found the Universe, recounts the frustrating, exhilarating, and at times humorous battles over one of history’s most dazzling ideas. Bartusiak shows how the black hole helped revive Einstein’s greatest achievement, the general theory of relativity, after decades of languishing in obscurity. Not until astronomers discovered such surprising new phenomena as neutron stars and black holes did the once-sedate universe transform into an Einsteinian cosmos, filled with sources of titanic energy that can be understood only in the light of relativity. Black Hole explains how Albert Einstein, Stephen Hawking, and other leading thinkers completely changed the way we see the universe.
The Gribbins relate the developments in 20th-century astronomy that have led to the shattering realization that all life is made of stardust scattered across the universe in great stellar explosions from supernovae. The authors eloquently explain how the physical structure of the universe has produced conditions ideal for life. 22 illustrations.
Do you know that black holes can affect time? that Stonehenge is a giant calendar? that the Oracle Bones of the North China Plain predict the phases of the moon? that the Pyramids are giant compasses? how Jonathan Swift knew that Mars had two moons when he wrote Gulliver's Travels? that the effects of black holes are described i