This book summarizes the early successes, drawbacks and accomplishments in cell biology and cell biotechnology achieved by the latest projects performed on the International Space Station ISS. It also depicts outcomes of experiments in tissue engineering, cancer research and drug design and reveals the chances that research in Space offers for medical application on Earth. This SpringerBriefs volume provides an overview on the latest international activities in Space and gives an outlook on the potential of biotechnological research in Space in future. This volume is written for students and researchers in Biomedicine, Biotechnology and Pharmacology and may specifically be of interest to scientists with focus on protein sciences, crystallization, tissue engineering, drug design and cancer research.
This book examines the effects of spaceflight at cellular and organism levels. Research on the effects of gravity - or its absence - and ionizing radiation on the evolution, development, and function of living organisms is presented in layman's terms. The book describes the benefits of space biology for basic and applied research to support human space exploration and the advantages of space as a laboratory for scientific, technological, and commercial research.
Under current NASA plans, investigations in the area of biotechnology will be a significant component of the life sciences research to be conducted on the International Space Station (ISS). They encompass work on cell science and studies of the use of microgravity to grow high-quality protein crystals. Both these subdisciplines are advancing rapidly in terrestrial laboratories, fueled by federal and industrial research budgets that dwarf those of NASA's life science program. Forging strong and fruitful connections between the space investigations and laboratory-bench biologists, a continual challenge for NASA' s life sciences program, is thus of great importance to ensuring the excellence of ISS research. This report evaluates the plan for NASA's biotechnology facility on the ISS and the scientific context that surrounds it, and makes recommendations on how the facility can be made more effective. In addition to questions about optimizing the instrumentation, the report addresses strategies for enhancing the scientific impact and improving the outreach to mainstream terrestrial biology. No major redirection of effort is called for, but collectively the specific, targeted changes recommended by the task group would have a major effect on the conduct of biotechnology research in space.
The advent of the International Space Station ISS and the exploration by humans of planets of the Solar system like the Moon and Mars is triggering worldwide interest. Space biology, a discipline familiar so far only to a restricted community, is gaining momentum. Space biologists are dealing with the behavior of terrestrial life in the extraterrestrial environment, in particular in 0 g. Several surprising and interesting phenomena have been discovered in 20 years of investigations in space laboratories. This began with so called "fishing" experiments, i.e. investigations trying to find out, without solid hypotheses, whether a biological system is altering its behavior when exposed to zero gravity. Today's space biology is a scientific discipline based on systematic studies carried out by renowned scientists. Some of the leaders in the field describe their work, ideas and findings. This book will introduce the reader to this still young field of research which will certainly provide unexpected and significant surprises in the future.
This volume provides a comprehensive overview of the major applications and potential of fungal biotechnology. The respective chapters report on the latest advances and opportunities in each topic area, proposing new and sustainable solutions to some of the major challenges faced by modern society. Aimed at researchers and biotechnologists in academia and industry, it represents essential reading for anyone interested in fungal biotechnology, as well as those working within the broader area of microbial biotechnology. Written in an accessible language, the book also offers a valuable reference resource for decision-makers in government and at non-governmental organizations who are involved in the development of cleaner technologies and the global bioeconomy. The 21st century is characterized by a number of critical challenges in terms of human health, developing a sustainable bioeconomy, facilitating agricultural production, and establishing practices that support a cleaner environment. While there are chemical solutions to some of these challenges, developing bio-based approaches is becoming increasingly important. Filamentous fungi, ‘the forgotten kingdom,’ are a group of unique organisms whose full potential has yet to be revealed. Some key properties, such as their exceptional capacity to secrete proteins into the external environment, have already been successfully harnessed for the production of industrial enzymes and cellulosic biofuels. Many further aspects discussed here –such as feeding the hungry with fungal protein, and the potential applications of the various small molecules produced by fungi –warrant further exploration. In turn, the book covers the use of fungal cell factories to produce foreign molecules, e.g. for therapeutics. Strategies including molecular approaches to strain improvement, and recent advances in high-throughput technologies, which are key to finding better products and producers, are also addressed. Lastly, the book discusses the advent of synthetic biology, which is destined to greatly expand the scope of fungal biotechnology. The chapter “Fungal Biotechnology in Space: Why and How?” is available open access under a Creative Commons Attribution 4.0 International License at link.springer.com.
This book summarizes the early successes, drawbacks and accomplishments in cell biology and cell biotechnology achieved by the latest projects performed on the International Space Station ISS. It also depicts outcomes of experiments in tissue engineering, cancer research and drug design and reveals the chances that research in Space offers for medical application on Earth. This SpringerBriefs volume provides an overview on the latest international activities in Space and gives an outlook on the potential of biotechnological research in Space in future. This volume is written for students and researchers in Biomedicine, Biotechnology and Pharmacology and may specifically be of interest to scientists with focus on protein sciences, crystallization, tissue engineering, drug design and cancer research.
Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.
As an authoritative guide to biotechnology enterprise and entrepreneurship, Biotechnology Entrepreneurship and Management supports the international community in training the biotechnology leaders of tomorrow. Outlining fundamental concepts vital to graduate students and practitioners entering the biotech industry in management or in any entrepreneurial capacity, Biotechnology Entrepreneurship and Management provides tested strategies and hard-won lessons from a leading board of educators and practitioners. It provides a 'how-to' for individuals training at any level for the biotech industry, from macro to micro. Coverage ranges from the initial challenge of translating a technology idea into a working business case, through securing angel investment, and in managing all aspects of the result: business valuation, business development, partnering, biological manufacturing, FDA approvals and regulatory requirements. An engaging and user-friendly style is complemented by diverse diagrams, graphics and business flow charts with decision trees to support effective management and decision making. - Provides tested strategies and lessons in an engaging and user-friendly style supplemented by tailored pedagogy, training tips and overview sidebars - Case studies are interspersed throughout each chapter to support key concepts and best practices. - Enhanced by use of numerous detailed graphics, tables and flow charts
An argument that we have a moral duty to explore other planets and solar systems--because human life on Earth has an expiration date. Inevitably, life on Earth will come to an end, whether by climate disaster, cataclysmic war, or the death of the sun in a few billion years. To avoid extinction, we will have to find a new home planet, perhaps even a new solar system, to inhabit. In this provocative and fascinating book, Christopher Mason argues that we have a moral duty to do just that. As the only species aware that life on Earth has an expiration date, we have a responsibility to act as the shepherd of life-forms--not only for our species but for all species on which we depend and for those still to come (by accidental or designed evolution). Mason argues that the same capacity for ingenuity that has enabled us to build rockets and land on other planets can be applied to redesigning biology so that we can sustainably inhabit those planets. And he lays out a 500-year plan for undertaking the massively ambitious project of reengineering human genetics for life on other worlds. As they are today, our frail human bodies could never survive travel to another habitable planet. Mason describes the toll that long-term space travel took on astronaut Scott Kelly, who returned from a year on the International Space Station with changes to his blood, bones, and genes. Mason proposes a ten-phase, 500-year program that would engineer the genome so that humans can tolerate the extreme environments of outer space--with the ultimate goal of achieving human settlement of new solar systems. He lays out a roadmap of which solar systems to visit first, and merges biotechnology, philosophy, and genetics to offer an unparalleled vision of the universe to come.
This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.