Biophysics is the science of physical principles underlying the "phenomenon of life" on all levels of organization. This book begins by explaining molecular and ionic interactions, movements, excitation and energy transfer, and the self-organization of supramolecular structures. Then the biological organism is introduced as a non-equilibrium system. Finally, system analyses are discussed as well as environmental biophysics, ecological interactions, growth, differentiation, and evolution. A growing number of applications in biotechnology are based on these biophysical concepts.
Designed for biology, physics, and medical students, Introductory Biophysics: Perspectives on the Living State, provides a comprehensive overview of the complex subject of biological physics. The companion CD-ROM, with MATLAB examples and the student version of QuickFieldTM, allows the student to perform biophysical simulations and modify the textbook example files. Included in the text are computer simulations of thermodynamics, astrobiology, the response of living cells to external fields, chaos in population dynamics, numerical models of evolution, electrical circuit models of cell suspension, gap junctions, and neuronal action potentials. With this text students will be able to perform biophysical simulations within hours. MATLAB examples include; the Hodgkin Huxley equations; the FitzHugh-Nagumo model of action potentials; fractal structures in biology; chaos in population dynamics; the cellular automaton model (the game of life); pattern formation in reaction-diffusion systems. QuickFieldTM tutorials and examples include; calculation of currents in biological tissue; cells under electrical stimulation; induced membrane potentials; heat transfer and analysis of stress in biomaterials.
Biophysics is an evolving, multidisciplinary subject which applies physics to biological systems and promotes an understanding of their physical properties and behaviour. Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The book also includes extensive coverage of biopolymers, biomembranes, biological energy, and nervous systems. The text not only explores basic ideas, but also discusses recent developments, such as protein folding, DNA/RNA conformations, molecular motors, optical tweezers and the biological origins of consciousness and intelligence. Biophysics: An Introduction * Is a carefully structured introduction to biological and medical physics * Provides exercises at the end of each chapter to encourage student understanding Assuming little biological or medical knowledge, this book is invaluable to undergraduate students in physics, biophysics and medical physics. The book is also useful for graduate students and researchers looking for a broad introduction to the subject.
From reviews of the first edition: "well organized . . . Recommended as an introductory text for undergraduates" -- AAAS Science Books and Films "well written and illustrated" -- Bulletin of the American Meteorological Society
This is the first book to reveal the mechanism of 'long-term water memory' effects. The theory is based on precise mathematical calculations and a fundamental physical model of clathrate hydrates developed by Pauling in 1959. This book gives a detailed review of modern theories dealing with structure and properties of water. It also provides theory regarding the effect of activated water on biological systems under the life suppressive conditions such as ionizing and non-ionizing radiation. In addition, it provides detail information regarding the mechanism of DNA self-reparation process under the influence of activated water. Also included is a chapter on the innovative patented technology based on mechanism of 'long-term water memory' to prove the feasilibity with experimental data and protocols.
Molecular biophysics is a rapidly growing field of research that plays an important role in elucidating the mysteries of life's molecules and their assemblies, as well as the relationship between their structure and function. Introduction to Molecular Biophysics fills an existing gap in the literature on this subject by providing the reader with th
Biophysics is an intradisciplinary as well as an emerging subject in the field of Biological Science in the recent years.It is a hybrid science which deals with Physics ,Chemistry and Biology.
Increasing numbers of physicists, chemists, and mathematicians are moving into biology, reading literature across disciplines, and mastering novel biochemical concepts. To succeed in this transition, researchers must understand on a practical level what is experimentally feasible. The number of experimental techniques in biology is vast and often s
A physicist's guide to the phenomena of life Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology—from the discovery of DNA's structure to imaging of the human brain—have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Bialek begins by exploring how photon counting in vision offers important lessons about the opportunities for quantitative, physics-style experiments on diverse biological phenomena. He draws from these lessons three general physical principles—the importance of noise, the need to understand the extraordinary performance of living systems without appealing to finely tuned parameters, and the critical role of the representation and flow of information in the business of life. Bialek then applies these principles to a broad range of phenomena, including the control of gene expression, perception and memory, protein folding, the mechanics of the inner ear, the dynamics of biochemical reactions, and pattern formation in developing embryos. Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems. Covers a range of biological phenomena from the physicist's perspective Features 200 problems Draws on statistical mechanics, quantum mechanics, and related mathematical concepts Includes an annotated bibliography and detailed appendixes
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or entire organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What does the cell consist of? Where are its organelles? What function does each organelle fulfil? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, one of the main questions is the physical movement of all these molecules between organelles within the cell, as well as their exchange with the extracellular medium. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and that in turn leads to the biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfil its function as a part of a larger organ or organism. This book is an inventory of physical transport processes occurring in cells while the second volume will be a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.