Biological Materials Science

Biological Materials Science

Author: Marc André Meyers

Publisher: Cambridge University Press

Published: 2014-07-31

Total Pages: 647

ISBN-13: 1107010454

DOWNLOAD EBOOK

Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.


Inspired by Biology

Inspired by Biology

Author: National Research Council

Publisher: National Academies Press

Published: 2008-06-17

Total Pages: 170

ISBN-13: 0309134293

DOWNLOAD EBOOK

Scientists have long desired to create synthetic systems that function with the precision and efficiency of biological systems. Using new techniques, researchers are now uncovering principles that could allow the creation of synthetic materials that can perform tasks as precise as biological systems. To assess the current work and future promise of the biology-materials science intersection, the Department of Energy and the National Science Foundation asked the NRC to identify the most compelling questions and opportunities at this interface, suggest strategies to address them, and consider connections with national priorities such as healthcare and economic growth. This book presents a discussion of principles governing biomaterial design, a description of advanced materials for selected functions such as energy and national security, an assessment of biomolecular materials research tools, and an examination of infrastructure and resources for bridging biological and materials science.


Biomolecular Materials: Volume 292

Biomolecular Materials: Volume 292

Author: Christopher Viney

Publisher:

Published: 1993-05-28

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

Lessons from nature; Cellular synthesis; Non-cellular synthesis; Structural and mechanical properties; Applications.


Biomolecular Feedback Systems

Biomolecular Feedback Systems

Author: Domitilla Del Vecchio

Publisher: Princeton University Press

Published: 2014-10-26

Total Pages: 287

ISBN-13: 1400850509

DOWNLOAD EBOOK

This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu


Materials in Biology and Medicine

Materials in Biology and Medicine

Author: Sunggyu Lee

Publisher: CRC Press

Published: 2012-03-21

Total Pages: 253

ISBN-13: 1439881707

DOWNLOAD EBOOK

While the interdisciplinary field of materials science and engineering is relatively new, remarkable developments in materials have emerged for biological and medical applications, from biocompatible polymers in medical devices to the use of carbon nanotubes as drug delivery vehicles. With peer-reviewed chapters written by a select group of academic and industry experts, this comprehensive yet accessible book covers the most advanced materials used in biology and medicine. The book focuses on biomaterials and bioinspired materials, functional and responsive materials, controlling biology with materials, and the development of devices and enabling technologies. It will help readers tackle challenges of novel materials, carry out new process and product development projects, and create new methodologies for applications that enhance the quality of life.


Bioinspired Materials for Medical Applications

Bioinspired Materials for Medical Applications

Author: Lígia Rodrigues

Publisher: Woodhead Publishing

Published: 2016-09-24

Total Pages: 546

ISBN-13: 0081007469

DOWNLOAD EBOOK

Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians


Handbook of Chemical and Biological Sensors

Handbook of Chemical and Biological Sensors

Author: R.F Taylor

Publisher: CRC Press

Published: 1996-01-01

Total Pages: 1248

ISBN-13: 9781420050486

DOWNLOAD EBOOK

The Handbook of Chemical and Biological Sensors focuses on the development of sensors to recognize substances rather than physical quantities. This fully inclusive book examines devices that use a biological sensing element to detect and measure chemical and biological species as well as those that use a synthetic element to achieve a similar result. A first port of call for anyone with a specific interest, question, or problem relating to this area, this comprehensive source of reference serves as a guide for practicing scientists and as a text for many graduate courses. It presents relevant physics to chemists, chemistry to materials scientists, materials science to electronic engineers, and fabrication technology to all of the above. In addition, the handbook is useful both to newcomers and to experienced researchers who wish to broaden their knowledge of the constituent disciplines of this wide-ranging field.


Chemoresponsive Materials

Chemoresponsive Materials

Author: Hans-Jorg Schneider

Publisher: Royal Society of Chemistry

Published: 2015-06-26

Total Pages: 556

ISBN-13: 178262242X

DOWNLOAD EBOOK

Smart materials stimulated by chemical or biological signals are of interest for their many applications including drug delivery, as well as in new sensors and actuators for environmental monitoring, process and food control, and medicine. In contrast to other books on responsive materials, this volume concentrates on materials which are stimulated by chemical or biological signals. Chemoresponsive Materials introduces the area with chapters covering different responsive material systems including hydrogels, organogels, membranes, thin layers, polymer brushes, chemomechanical and imprinted polymers, nanomaterials, silica particles, as well as carbohydrate- and bio-based systems. Many promising applications are highlighted, with an emphasis on drug delivery, sensors and actuators. With contributions from internationally known experts, the book will appeal to graduate students and researchers in academia, healthcare and industry interested in functional materials and their applications.