Polyurethanes in Biomedical Applications studies the use of polyurethanes in implanted medical devices. This analysis describes the concepts of polymer science, the manufacture of polyurethanes, and the biological responses to implant polyurethanes, reflecting the developments in biomaterials science and the interdisciplinary nature of bioengineering.
Advances in Polyurethane Biomaterials brings together a thorough review of advances in the properties and applications of polyurethanes for biomedical applications. The first set of chapters in the book provides an important overview of the fundamentals of this material with chapters on properties and processing methods for polyurethane. Further sections cover significant uses such as their tissue engineering and vascular and drug delivery applications Written by an international team of leading authors, the book is a comprehensive and essential reference on this important biomaterial. - Brings together in-depth coverage of an important material, essential for many advanced biomedical applications - Connects the fundamentals of polyurethanes with state-of-the-art analysis of significant new applications, including tissue engineering and drug delivery - Written by a team of highly knowledgeable authors with a range of professional and academic experience, overseen by an editor who is a leading expert in the field
Medical devices play an important role in the field of medical and health technology, and encompass a wide range of health care products. Directive 2007/47/EC defines a medical device as any instrument, apparatus, appliance, software, material or other article, whether used alone or in combination, including the software intended by its manufacturer to be used specifically for diagnostic and/or therapeutic purposes and necessary for its proper application, intended by the manufacturer to be used for human beings. The design and manufacture of medical devices brings together a range of articles and case studies dealing with medical device R&D. Chapters in the book cover materials used in medical implants, such as Titanium Oxide, polyurethane, and advanced polymers; devices for specific applications such as spinal and craniofacial implants, and other issues related to medical devices, such as precision machining and integrated telemedicine systems. - Contains articles on a diverse range of subjects within the field, with internationally renowned specialists discussing each medical device - Offers a practical approach to recent developments in the design and manufacture of medical devices - Presents a topic that is the focus of research in many important universities and centres of research worldwide
This edited book compiles all category viewpoints in waterborne polyurethanes (WPUs) dispersions, composites, characterizing techniques, and allied applications such as coatings, adhesives, sealants, anticorrosive, flame-retardant, and biomedical applications. The book brings together panels of highly accomplished experts in the field of advanced polymers for versatile applications. It encompasses basic studies and addresses topics of novel issues which cover all the aspects in one place. The book is an invaluable guide to newcomers, research scholars, professors, and R&D industrial experts working in the field of polyurethane chemistry. Polyurethanes are excellent materials in coating technology owing to their chemical resistance, toughness, abrasion resistance, and mechanical stability. However, polyurethane dispersion contains volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) which are harmful to the environment. Hence, green chemistry research focuses on discovery of waterborne polyurethanes (WPUs) and pay attention. WPUs have fascinated growing interest in wide range of industrial and commercial applications.
Polyurethanes in Biomedical Applications studies the use of polyurethanes in implanted medical devices. This analysis describes the concepts of polymer science, the manufacture of polyurethanes, and the biological responses to implant polyurethanes, reflecting the developments in biomaterials science and the interdisciplinary nature of bioengineering.
Polyurethane Polymers: Composites and Nanocomposites concentrates on the composites and nanocomposites of polyurethane based materials. Polyurethane composites are a very important class of materials widely used in the biomedical and industrial field that offer numerous potential applications in many areas. This book discusses current research and identifies future research needs in the area. - Provides an elaborate coverage of the chemistry of polyurethane, its synthesis, and properties - Includes available characterization techniques - Relates types of polyurethanes to their potential properties - Discusses composites, nanocomposites options, and PU recycling
This book explores in depth a wide range of new biomaterials that hold great promise for applications in regenerative medicine. The opening two sections are devoted to biomaterials designed to direct stem cell fate and regulate signaling pathways. Diverse novel functional biomaterials, including injectable nanocomposite hydrogels, electrosprayed nanoparticles, and waterborne polyurethane-based materials, are then discussed. The fourth section focuses on inorganic biomaterials, such as nanobioceramics, hydroxyapatite, and titanium dioxide. Finally, up-to-date information is provided on a wide range of smart natural biomaterials, ranging from silk fibroin-based scaffolds and collagen type I to chitosan, mussel-inspired biomaterials, and natural polymeric scaffolds. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth the latest enabling technologies for regenerative medicine.
A practical handbook rather than merely a chemistry reference, Szycher's Handbook of Polyurethanes, Second Edition offers an easy-to-follow compilation of crucial new information on polyurethane technology, which is irreplaceable in a wide range of applications. This new edition of a bestseller is an invaluable reference for technologists, marketers, suppliers, and academicians who require cutting-edge, commercially valuable data on the most advanced uses for polyurethane, one of the most important and complex specialty polymers. internationally recognized expert Dr. Michael Szycher updates his bestselling industry "bible" With seven entirely new chapters and five that are revised and updated, this book summarizes vital contents from U.S. patent literature—one of the most comprehensive sources of up-to-date technical information. These patents illustrate the most useful technology discovered by corporations, universities, and independent inventors. Because of the wealth of information they contain, this handbook features many full-text patents, which are carefully selected to best illustrate the complex principles involved in polyurethane chemistry and technology. Features of this landmark reference include: Hundreds of practical formulations Discussion of the polyurethane history, key terms, and commercial importance An in-depth survey of patent literature Useful stoichiometric calculations The latest "green" chemistry applications A complete assessment of medical-grade polyurethane technology Not biased toward any one supplier’s expertise, this special reference uses a simplified language and layout and provides extensive study questions after each chapter. It presents rich technical and historical descriptions of all major polyurethanes and updated sections on medical and biological applications. These features help readers better understand developmental, chemical, application, and commercial aspects of the subject.