Biomechanics of Active Movement and Division of Cells

Biomechanics of Active Movement and Division of Cells

Author: Nuri Akkas

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 582

ISBN-13: 3642789757

DOWNLOAD EBOOK

The NATO Advanced Study Institute on Biomechanics of Active Movement and Division of Cells was held September 19-29, 1993 in Istanbul and the Proceedings are presented in this volume. Sixty-eight scientists from sixteen countries attended. Prof. J. Bereiter-Hahn of Goethe-Universitat, Frankfurt, Germany, Prof. A.K. Harris of the University of North Carolina, Chapel Hill, USA, Prof. R.M. Nerem of Georgia Institute of Technology, Atlanta, USA and Prof. R. Skalak of the University of California, San Diego, USA were the members of the International Organizing Committee. As the Scientific Director of the Institute, I wish to express my sincere appreciation for their assistance without which the Institute could not have taken place. This Institute is the third one of the meetings which are now called "the NATO Istanbul Meetings on Cytomechanics". The first one was the NATO Advanced Research Workshop on Biomechanics of Cell Division which was held October 12-17, 1986 in Istanbul. The Proceedings were published as NATO ASI Series A Life Sciences Vol. 132 by Plenum Press in 1987. The second one was the NATO Advanced Study Institute on Biomechanics of Active Movement and Deformation of Cells which was held September 3-13, 1989 in Istanbul. The Proceedings were published as NATO ASI Series H : Cell Biology Vol. 42 by Springer-Verlag in 1990.


Biomechanics of Active Movement and Deformation of Cells

Biomechanics of Active Movement and Deformation of Cells

Author: Nuri Akkas

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 533

ISBN-13: 3642836313

DOWNLOAD EBOOK

Cytomechanics is the application of the classical principles of mechanics in cell biology. It is an applied science concerned with the description and evaluation of mechanical properties of cells and their organelles as well as of the forces exerted by them. Thus, this topic needs a truly interdisciplinary approach, and accordingly this volume gives an up-to-date account of the current research done on cell division, mitosis, cytokinesis, cell locomotion and cell deformation during normal development and the cytoskeletal role in cell shape. Biologists, biomechanicians, biophysicists, biochemists and biomathematicians here discuss the basic concepts of mechanics and thermodynamics, emphasizing their applicability to cell activities.


An Introduction to Biomechanics

An Introduction to Biomechanics

Author: Jay D. Humphrey

Publisher: Springer

Published: 2015-07-25

Total Pages: 710

ISBN-13: 1493926233

DOWNLOAD EBOOK

This book covers the fundamentals of biomechanics. Topics include bio solids, biofluids, stress, balance and equilibrium. Students are encouraged to contextualize principles and exercises within a “big picture” of biomechanics. This is an ideal book for undergraduate students with interests in biomedical engineering.


Dynamics of Cell and Tissue Motion

Dynamics of Cell and Tissue Motion

Author: Wolfgang Alt

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 336

ISBN-13: 303488916X

DOWNLOAD EBOOK

An interdisciplinary study explaining the dynamics underlying biological motion – one of the most obvious expressions of self-organization. Designed for a broad audience from bioscientists to applied mathematicians, this book considers possible synergetic mechanisms of interaction and cooperation on different microscopic levels.


The Dynamic Architecture of a Developing Organism

The Dynamic Architecture of a Developing Organism

Author: L.V. Beloussov

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 243

ISBN-13: 9401589984

DOWNLOAD EBOOK

For anybody capable of an emotional response to it, any view of a developing organism should give birth to a feeling of amazement and even admiration, whether this development is seen directly, or in the form of a time lapse film, or even if mentally reconstructed from a series of static images. We ask ourselves how such seemingly primitive eggs or pieces of tissue, without any obvious intervention from outside, so regularly transform themselves into precisely constructed adult organisms. If we try to formulate what amazes us most of all about development, the answer will probably be that it is the internal capacity of developing organisms themselves to create new structures. How, then, can we satisfy our amazement in ways that are more or less reasonable, as well as scientifically valuable? This depends, first of all, on what position we choose to regard embryonic development as occupying among other structure creating processes, even including human activities. On the one hand, one might regard the development of organisms as a highly specialized class of processes, unique to themselves and alien to the general laws of nature, or at least not derivable from them and more akin to the deliberate acts of our own human behaviour. In that case our task would become reduced to a search for some specific 'instructions' for each next member of such a class. Whether in an overt or hidden form, some such ideology seems to dominate in present day developmental biology.


Biomechanics of the Gravid Human Uterus

Biomechanics of the Gravid Human Uterus

Author: Roustem N. Miftahof

Publisher: Springer Science & Business Media

Published: 2011-07-21

Total Pages: 196

ISBN-13: 3642214738

DOWNLOAD EBOOK

The complexity of human uterine function and regulation is one of the great wonders of nature and represents a daunting challenge to unravel. This book is dedicated to the biomechanical modeling of the gravid human uterus and gives an example of the application of the mechanics of solids and the theory of soft shells to explore medical problems of labor and delivery. After a brief overview of the anatomy, physiology and biomechanics of the uterus, the authors focus mainly on electromechanical wave processes, their origin, dynamics, and neuroendocrine and pharmacological modulations. In the last chapter applications, pitfalls and problems related to modeling and computer simulations of the pregnant uterus and pelvic floor structures are discussed. A collection of exercises is added at the end of each chapter to help readers with self-evaluation. The book serves as an invaluable source of information for researchers, instructors and advanced undergraduate and graduate students interested in systems biology, applied mathematics and biomedical engineering.


Geometric Analysis and Nonlinear Partial Differential Equations

Geometric Analysis and Nonlinear Partial Differential Equations

Author: Stefan Hildebrandt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 663

ISBN-13: 3642556272

DOWNLOAD EBOOK

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.


Cilia, Mucus, and Mucociliary Interactions

Cilia, Mucus, and Mucociliary Interactions

Author: Nadav Liron

Publisher: CRC Press

Published: 1998-02-26

Total Pages: 617

ISBN-13: 1482269953

DOWNLOAD EBOOK

Written by nearly 60 of the world's leading investigators in this rapidly expanding field, this state-of-the-art reference furnishes detailed presentations on the basic science and clinical aspects of cilia, mucus, and mucociliary interactions. Providing stimulating coverage of the latest information in a single source, Cilia, Mucus, and Mucoci


Tissue Mechanics

Tissue Mechanics

Author: Stephen C. Cowin

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 685

ISBN-13: 0387499857

DOWNLOAD EBOOK

The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.