Biomass Based Energy Storage Materials

Biomass Based Energy Storage Materials

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2020-08-15

Total Pages: 150

ISBN-13: 1644900866

DOWNLOAD EBOOK

The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production. Topics covered include: Bone Char as a Support Material to Build a Microbial Biocapacitor; Biomass Derived Composites; Lignin- and Bamboo Derived Materials, Cellulose-Derived Electrodes; Water Splitting, Fuel cells, and Supercapacitor Technologies. 465 References. Keywords: Bamboo Stick, Biochar, Bioelectrodes, Biofilm, Biomass, Bone Char, Carbon Nanofiber, Cellulose-Derived Electrodes, Fuel Cells, Green Energy, Microbial Biocapacitor, Biomass Derived Composites, High-Frequency Supercapacitors, Lignin Materials, Bamboo Materials, Lithium-Ion Batteries, Lithium-Sulfur Batteries, Natural Precursors, Porous Carbon, Supercapacitor Technology, Water Splitting.


Biomass Based Energy Storage Materials

Biomass Based Energy Storage Materials

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2020-08-15

Total Pages: 140

ISBN-13: 1644900874

DOWNLOAD EBOOK

The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production. Topics covered include: Bone Char as a Support Material to Build a Microbial Biocapacitor; Biomass Derived Composites; Lignin- and Bamboo Derived Materials, Cellulose-Derived Electrodes; Water Splitting, Fuel cells, and Supercapacitor Technologies. 465 References. Keywords: Bamboo Stick, Biochar, Bioelectrodes, Biofilm, Biomass, Bone Char, Carbon Nanofiber, Cellulose-Derived Electrodes, Fuel Cells, Green Energy, Microbial Biocapacitor, Biomass Derived Composites, High-Frequency Supercapacitors, Lignin Materials, Bamboo Materials, Lithium-Ion Batteries, Lithium-Sulfur Batteries, Natural Precursors, Porous Carbon, Supercapacitor Technology, Water Splitting.


Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Author: A. Pandikumar

Publisher: Elsevier

Published: 2020-05-13

Total Pages: 542

ISBN-13: 0128195525

DOWNLOAD EBOOK

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.


Char and Carbon Materials Derived from Biomass

Char and Carbon Materials Derived from Biomass

Author: Mejdi Jeguirim

Publisher: Elsevier

Published: 2019-03-19

Total Pages: 508

ISBN-13: 0128148942

DOWNLOAD EBOOK

Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications provides an overview of biomass char production methods (pyrolysis, hydrothermal carbonization, etc.), along with the characterization techniques typically used (Scanning Electronic Microscopy, X-Ray Fluorescence, Nitrogen adsorption, etc.) In addition, the book includes a discussion of the various properties of biomass chars and their suitable recovery processes, concluding with a demonstration of applications. As biomass can be converted to energy, biofuels and bioproducts via thermochemical conversion processes, such as combustion, pyrolysis and gasification, this book is ideal for professionals in energy production and storage fields, as well as professionals in waste treatment, gas treatment, and more. - Provides a discussion of sources of biomass feedstocks, such as agricultural, woody plants and food processing residue - Discusses the various production processes of biomass chars, including pyrolysis and hydrothermal carbonization - Explores various applications of biomass chars within different industries, including energy and agronomy


Biomass for Renewable Energy, Fuels, and Chemicals

Biomass for Renewable Energy, Fuels, and Chemicals

Author: Donald L. Klass

Publisher: Elsevier

Published: 1998-07-06

Total Pages: 669

ISBN-13: 0080528058

DOWNLOAD EBOOK

Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience


Chemical Energy Storage

Chemical Energy Storage

Author: Robert Schlögl

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-01-19

Total Pages: 685

ISBN-13: 3110608596

DOWNLOAD EBOOK

Energy – in the headlines, discussed controversially, vital. The use of regenerative energy in many primary forms leads to the necessity to store grid dimensions for maintaining continuous supply and enabling the replacement of fossil fuel systems. Chemical energy storage is one of the possibilities besides mechano-thermal and biological systems. This work starts with the more general aspects of chemical energy storage in the context of the geosphere and evolves to dealing with aspects of electrochemistry, catalysis, synthesis of catalysts, functional analysis of catalytic processes and with the interface between electrochemistry and heterogeneous catalysis. Top-notch experts provide a sound, practical, hands-on insight into the present status of energy conversion aimed primarily at the young emerging research front.


Electrode Materials for Energy Storage and Conversion

Electrode Materials for Energy Storage and Conversion

Author: Mesfin A. Kebede

Publisher: CRC Press

Published: 2021-11-17

Total Pages: 518

ISBN-13: 1000457869

DOWNLOAD EBOOK

This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.


Functional Materials For Next-generation Rechargeable Batteries

Functional Materials For Next-generation Rechargeable Batteries

Author: Jiangfeng Ni

Publisher: World Scientific

Published: 2021-02-10

Total Pages: 229

ISBN-13: 9811230684

DOWNLOAD EBOOK

Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.


Materials for Sustainable Energy

Materials for Sustainable Energy

Author: Vincent Dusastre

Publisher: World Scientific

Published: 2011

Total Pages: 360

ISBN-13: 9814317640

DOWNLOAD EBOOK

The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.


Biomass Energy with Carbon Capture and Storage (BECCS)

Biomass Energy with Carbon Capture and Storage (BECCS)

Author: Clair Gough

Publisher: John Wiley & Sons

Published: 2018-09-24

Total Pages: 338

ISBN-13: 1119237726

DOWNLOAD EBOOK

An essential resource for understanding the potential role for biomass energy with carbon capture and storage in addressing climate change Biomass Energy with Carbon Capture and Storage (BECCS) offers a comprehensive review of the characteristics of BECCS technologies in relation to its various applications. The authors — a team of expert professionals — bring together in one volume the technical, scientific, social, economic and governance issues relating to the potential deployment of BECCS as a key approach to climate change mitigation. The text contains information on the current and future opportunities and constraints for biomass energy, explores the technologies involved in BECCS systems and the performance characteristics of a variety of technical systems. In addition, the text includes an examination of the role of BECCS in climate change mitigation, carbon accounting across the supply chain and policy frameworks. The authors also offer a review of the social and ethical aspects as well as the costs and economics of BECCS. This important text: Reveals the role BECCS could play in the transition to a low-carbon economy Discusses the wide variety of technical and non-technical constraints of BECCS Presents the basics of biomass energy systems Reviews the technical and engineering issues pertinent to BECCS Explores the societal implications of BECCS systems Written for academics and research professionals, Biomass Energy with Carbon Capture and Storage (BECCS) brings together in one volume the issues surrounding BECCS in an accessible and authoritative manner.