Biologically Inspired Polymer Micro-Patterned Adhesives

Biologically Inspired Polymer Micro-Patterned Adhesives

Author:

Publisher:

Published: 2008

Total Pages: 50

ISBN-13:

DOWNLOAD EBOOK

Synthetic micro-pillar dry adhesives were developed based on the micro- and nano-structures used by geckos and beetles. These bio-inspired adhesives will supplement the existing respirator peripheral seal to enhance protection in wet or dirty environments and during head movements. Polyurethane microfiber arrays were fabricated with various geometries. Adhesion was measured on hard, soft, rough, and smooth surfaces. Small diameter, spatulate-tipped microfibers showed the greatest adhesion on all substrates. The sealing capability of an encapsulated fiber array surpassed the requirements of the military exhalation valve leakage test. Additional work is required to optimize the fiber material and geometry to achieve the required adhesion for respirator face seals. The U.S. Army Edgewood Chemical Biological Center (ECBC) is investigating novel sealing technologies for respiratory protective masks to address current shortfalls in operational performance due to improper fitting and donning practices. One promising area is biologically inspired dry adhesives. Geckos, spiders, beetles, flies, and many other climbing lizards and insects have a variety of sub-millimeter scale fibers on their feet to robustly and efficiently climb on a wide range of smooth and rough surfaces. These microlnano structures enable strong, robust, and repeatable adhesion and friction in addition to being self-cleaning of dirt and other contaminants on surfaces. This work aims to investigate the usage of a synthetic version of these fibrillar adhesion mechanisms in improving mask sealing performance.


Bio-inspired Structured Adhesives

Bio-inspired Structured Adhesives

Author: Lars Heepe

Publisher: Springer

Published: 2017-07-21

Total Pages: 357

ISBN-13: 3319591142

DOWNLOAD EBOOK

This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions.


Challenges for Synthetic Gecko Adhesives

Challenges for Synthetic Gecko Adhesives

Author: Andrew George Gillies

Publisher:

Published: 2013

Total Pages: 125

ISBN-13:

DOWNLOAD EBOOK

The past decade has seen rapid advancement in gecko synthetic adhesives (GSAs) and their performance has also steadily increased. However, there still remains a gap between the capabilities of current GSAs, and the properties required for GSAs to perform as the gecko does: on natural undulating surfaces with several scales of roughness, in dirty environments where particle contamination is the norm, and for thousands or even tens of thousands of cycles. For continued progress to be made in GSAs, focus must shift from trying to attain high adhesive values under ideal conditions, to exploring the weaknesses in current GSAs and contrasting those with the principles that underpin the success of the natural gecko systems in real world challenging conditions. Here we show results from the testing and simulation of various GSA systems in rough environments, with contaminating particles of varying size and for repeated cycling. We report that with careful geometry and material consideration, large increases in 'real world' performance can be obtained, and in some cases active control can be utilized to increase controllability. To better understand adhesion on macroscopic rough surfaces, we studied the ability of live Tokay Geckos to adhere to an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. As well, Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Similarly, we sought to understand the impact of surface roughness on the adhesion of two types of GSA arrays: those with hemispherical shaped tips and those with spatula shaped tips. Our simulations showed that the nanoscale geometry of the tip shape dramatically alters the macroscale adhesion of the array, and that on sinusoidal surfaces with roughness much larger than the nanoscale features, there is still a clear benefit to having spatula shaped features. Similar to experimental results found with the macroscale features of the gecko adhesive system, when roughness approaches the size of the fiber features, adhesion drops dramatically. We have also investigated the impact of two design parameters on the dry self-cleaning capability of GSAs by experimentally testing two GSAs after fouling with small (1 micron), medium (3-10 microns) and large (40-50 microns) particles. We found that a GSA made from a hard thermoplastic with nanoscopic fibers was able to recover 96-115% of its shear adhesion after fouling with small and large but not medium particles, while a GSA made from a soft polymer and microscopic fibers recovered 40-55% on medium and large particles. Further examination by scanning electron microscopy (SEM) revealed that the soft polymer structures were not shedding the smaller particles during recovery steps, but were instead being absorbed into the surface, and that, regardless of their size, particles did not release from the soft polymer surface. An analysis of the contact strength between fibers, particles and substrates of various dimensions and elasticity reveals that dry self-cleaning will be more effective for GSAs fabricated with smaller fiber diameters and for GSAs fabricated from materials with smaller loss functions, such as hard thermoplastics. This has important implications on the choice of materials and geometries used for GSAs when dry self-cleaning capability is a desired function in the material, and indicates that hard polymer GSAs with smaller fiber diameters are less prone to fouling. As indicated by results of dry self-cleaning on a passive soft polymer fibrillar adhesive, we set out to design a system with active control and release of particles. We have demonstrated controllable adhesion to glass spheres with a new magnetically actuated synthetic gecko adhesive made from a magnetoelastomer composite. Capable of controlling adhesion to glass spheres 500 microns to 1 mm, this represents an important step in realizing an adhesive with dry self-cleaning capabilities across a wide range of particle sizes. We also examined the behavior of high density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with normal preload less than 40 kPa. We found that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing marked plastic deformation of fiber tips. This deformation was attributed to shear induced plastic creep of the fiber tips from high adhesion forces, adhesive wear or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays, and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko. The discovery of this wear mechanism has uncovered a possible pathway to the fabrication of nanoscale spatula shaped tips. Spatula tips have been shown by the rough surface simulation to greatly improve adhesion strength. Several possible fabrication pathways are proposed and preliminary results on these fabrication techniques are presented.


Gecko and Bio-inspired Hierarchical Fibrillar Adhesive Structures Explored by Multiscale Modeling and Simulation

Gecko and Bio-inspired Hierarchical Fibrillar Adhesive Structures Explored by Multiscale Modeling and Simulation

Author: Shihao Hu

Publisher:

Published: 2012

Total Pages: 151

ISBN-13:

DOWNLOAD EBOOK

Gecko feet integrate many intriguing functions such as strong adhesion, easy detachment and self-cleaning. Mimicking this biological system leads to the development of a new class of advanced fibrillar adhesives useful in various applications. In spite of many significant progresses that have been achieved in demonstrating the enhanced adhesion strength from divided non-continuous surfaces at micro- and nano- scales, directional dependent adhesion from anisotropic structures, and some tolerance of third body interferences at the contact interfaces, the self-cleaning capability and durability of the artificial fibrillar adhesives are still substantially lagging behind the natural version. These insufficiencies impede the final commercialization of any gecko inspired products. Hence here, we have focused our attentions on these critical issues in both (i) the gecko adhesive systems and (ii) the synthetic counterparts. (i) We tested the self-cleaning of geckos during locomotion and provided the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80% of their original stickiness in only 4 steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment and detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reusable and reliable dry adhesives and devices. (ii) A multiscale modeling approach has been developed to study the force anisotropy, structural deformation and failure mechanisms of a two-level hierarchical CNT structures mimicking the gecko foot hairs. At the nanoscale, fully atomistic molecular dynamics simulation was performed to explore the origin of adhesion enhancement considering the existence of laterally distributed CNT segments. Tube-tube interactions and the collective effect of interfacial adhesion and friction forces were investigated at an upper level. A fraction of the vertically aligned CNT arrays with laterally distributed segments on top was simulated by coarse grained molecular dynamics. The characteristic interfacial adhesive behaviors obtained were further adopted as the cohesive laws incorporated in the finite element models at the device level and fitted with experimental results. The multiscale modeling approach provides a bridge to connect the atomic/molecular configurations and the micro-/nano- structures of the CNT array with its macro-level adhesive behaviors, and the predictions from the modeling and simulation help to understand the interfacial behaviors, processes and mechanics of the gecko inspired fibrillar structures for dry adhesive applications.


Improved Bio-inspired Artificial Gecko Adhesive by Using Hierarchical Fibrillar Structures

Improved Bio-inspired Artificial Gecko Adhesive by Using Hierarchical Fibrillar Structures

Author: Yasong Li

Publisher:

Published: 2014

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Geckos are well known for being rapid climbers that have long existed in nature. The reversible and reusable adhesive on their feet intrigues scientists to explore a bio-mimetic adhesive, which inherits the adhesion properties of the gecko's adhesives. Recent advances in electron microscopy reveal the secret of gecko's climbing ability: there are hierarchical fibrillar structures branching from the skin of their climbing feet. Sizes of these hierarchical fibrils range from micrometer to nanometer. These fibrils are arranged to closely resemble a tree, and these tree like structures form a fibril forest on the skin of the climbing feet. Nano-fibrils in close proximity with the contacting surfaces interact with the substrate through intermolecular forces. Slender micro-fibrils extend the nano-fibrils, which are located at their open ends, to reach recesses of the contacting surfaces. The special arrangement of the fibrillar arrays enables quick attachment and detachment of the feet from surfaces of different materials and varying roughness. Inspired by the gecko's adhesive, artificial fibrillar adhesives have been sought developing for more than a decade. Early attempts were focused on making use of the intermolecular interaction by nano-fibrillar arrays. These artificial fibrillar adhesives have achieved great performance on flat surfaces but not as good when they were used on relatively rough surfaces. Recent attempts of preparing a hierarchical fibrillar structure, which contains fibrils in different length scales, have rare success on improving adhesion performance. Evidence of extra compliancy provided by the hierarchical structure is also not clear. This thesis provides evidence that there is a correlation between structure compliancy and adhesion performance of a hierarchical fibrillar adhesive. Improved compliancy and adhesion forces are observed on a hierarchical fibrillar structure with achievements of several milestones, which include developing methods for preparing and characterizing hierarchical fibrillar structures. Experimental results also reveal the interaction of fibrillar arrays with the contacting surfaces. Information obtained is valuable for future development and application of such artificial fibrillar adhesive.


From Gecko Feet to Adhesive Tape

From Gecko Feet to Adhesive Tape

Author: Wil Mara

Publisher: Cherry Lake

Published: 2014-01-01

Total Pages: 36

ISBN-13: 1624317642

DOWNLOAD EBOOK

Learn about how nature has inspired technological innovations with this book on the similarities between gecko feet and a new adhesive tape. Integrating both historical and scientific perspectives, this book explains how gecko feet inspired the invention of an adhesive. Readers will make connections and examine the relationship between the two concepts. Sidebars, photographs, a glossary, and a concluding chapter on important people in the field add detail and depth to this informational text on biomimicry.


Synthetic Gecko Adhesives and Adhesion in Geckos

Synthetic Gecko Adhesives and Adhesion in Geckos

Author: Liehui Ge

Publisher:

Published: 2011

Total Pages: 176

ISBN-13:

DOWNLOAD EBOOK

Geckos' feet consist of an array of millions of keratin hairs that are hierarchically split at their ends into hundreds of contact elements called "spatula(e)". Spatulae make intimate contacts with surface and the attractive van der Waals (vdW) interactions are strong enough to support up to 100 times the animals' bodyweight. Tremendous efforts have been made to mimic this adhesion with polymeric materials and carbon nanotubes (CNT). However, most of these fall short of the performance of geckos. "Contact splitting principle", based on Johnson-Kendall-Roberts (JKR) theory, predicts that a vertically aligned carbon nanotube array (VA-CNT) will be at least 50 times stronger than gecko feet. Although 160 times higher adhesion was recorded in atomic force microscopy (AFM) measurements, macroscopic VA-CNT patches often show low or even no adhesion to substrates. The behavior of VA-CNT hairs near the contact interface has been explored using a combination of mechanical, electrical contact resistance, and scanning electron microscopic (SEM) measurements. Instead of making the expected end contacts, carbon nanotubes make significant side-wall contacts that increase with preload. Adhesion of side-wall contact CNTs is determined by the balance of adhesion in the contact region and the bending stiffness of the CNTs, thus a compliant VA-CNT array is required to make adhesive patches. Macroscopic patches of compliant VA-CNT array have been fabricated. Patches of uniform array have adhesive strength similar to that of geckos (10 N/cm2) on a variety of substrates and can be removed easily by peeling. When the array is patterned to mimic the hierarchical structures of gecko foot-hairs, strength increases up to four times. VA-CNT-based gecko adhesives are self-cleaning, non-viscoelasticity and give good strength in vacuum. These properties are desired in robotics, microelectronics, thermal management and outer space operations. Current theory still cannot completely explain adhesion of gecko feet. A series of experiments have been carried out to measure adhesion at different temperatures using a single protocol with two species of gecko that had been previously studied (G. gecko and P. dubia). Strong evidence of an effect of temperature was found but the trend was counterintuitive given the thermal biology of geckos and it violated the prediction by van der Waals interactions. Consequently, other factors (e.g., humidity) that could explain the variation in the observed clinging performance were examined. Evidence was found, unexpectedly, that humidity is likely an important determinant of clinging force in geckos. Both van der Waals and capillary forces fail to explain the shear adhesion data at the whole animal scale. Resolution of this paradox will require examination of the physical and chemical interaction at the interface and particular way in which water interacts with substrate and setae at the nanometer scale.


Design of Bio-inspired Directional Tapered Adhesives and Hierarchies

Design of Bio-inspired Directional Tapered Adhesives and Hierarchies

Author: Noe Esparza

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Research into how the gecko lizard is able to climb a wide variety of surfaces has re- vealed an adhesive system that takes a fundamentally different approach than is found in conventional pressure-sensitive adhesives such as sticky tape. The gecko's adhesive system is composed of setal stalks, each thinner than a human hair and terminating in spatulae only 250 nm across. The entire hierarchical system is composed of beta- keratin, a tough, hydrophobic material, somewhat harder than the alpha-keratin of human fingernails. The geometry of the setae and spatulae allow them to conform to surfaces in a manner similar to very soft materials, but without the tendency of tacky materials to become fouled with dirt. Using the gecko adhesive system as inspiration, Biomimetics and Dexterous Ma- nipulation Laboratory developed an adhesive that is suitable for robotic climbing ap- plications. The smallest features of this adhesive are arrays of sharp wedges molded from silicone rubber. A tapered feature was pursued because it is capable of repro- ducing the "frictional adhesion" property of the gecko's adhesive system. Frictional- adhesion defines a behavior for which increasing the shear stress imposed at a contact increases the available adhesive stress perpendicular to the surface. A consequence of frictional adhesion is that one can control the amount of adhesion by controlling the applied shear load. In the present case, the behavior arises from the fact that sharp wedge-shaped features initially present very little area as they are brought into contact with a surface. However, they bend over when the array is loaded in shear, so that the contact area and the adhesion grow in proportion. This thesis seeks to understand how the details of the tapered wedge geometry, including the wedge profile and angle of inclination, influence the frictional adhesive behavior. The analysis includes a combination of numerical finite element modeling and empirical pull-off tests. The constraints on material stiffness, wedge geometry and spacing are also studied, as affected by possible failure modes such as self-sticking of adjacent wedges (leading to "clumping"). The desire to test wedges at various angles of inclination lead to the development of a new micro-machining process for creating molds for the wedge arrays. This process affords much greater freedom to control the wedge size and geometry than a previous lithographic process. However, a byproduct of the machining process is that the wedges have a non-negligible surface roughness on their contacting faces, which compromises their performance. Consequently, a new process was developed to improve the surface finish by "inking" the molded wedges, depositing a thin film of liquid silicone rubber onto their faces and providing a smoother surface. The resulting microwedges achieve more than double the maximum adhesion and several times the adhesion at low levels of shear than previous microwedges from molds created using the lithographic process. Although the microwedges stick well to smooth, flat surfaces such as glass, they cannot conform to surfaces with undulations higher than a couple of micrometers. In addition, the array of microwedges must be precisely aligned with surfaces so that all wedges are uniformly loaded. To mitigate these limitations, some approximation to the gecko's compliant hierarchy of lamellae, setae and spatulae is needed. The solution presented in this thesis is a two-layer hierarchical system in which the arrays of wedges are supported by a larger array of angled pillars. In between the pillars and wedges is a film of solid silicone rubber, which bridges the gaps between pillars and helps to create a relatively uniform loading of the wedges. A combination of numerical analysis and empirical pull-off tests is used to understand the relationships among pillar dimensions, pillar spacing and film thickness that govern the performance of this structure. At one extreme, the loading can become sufficiently non-uniform that some wedges lose contact with the surface, resulting in a loss of adhesion. At the other extreme, the structure is too stiff to accommodate surface undulations and misalignment. The thesis concludes with a summary of the results on wedges and hierarchical adhesive structures, and discusses the implications for future work.


Microfluidics and Nanofluidics Handbook, 2 Volume Set

Microfluidics and Nanofluidics Handbook, 2 Volume Set

Author: Sushanta K. Mitra

Publisher: CRC Press

Published: 2011-09-20

Total Pages: 1767

ISBN-13: 1466515740

DOWNLOAD EBOOK

A comprehensive, two-volume handbook on Microfluidics and Nanofluidics, this text covers fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications with special emphasis on the energy sector. Each chapter begins with introductory coverage to a subject and then narrows in on advanced techniques and concepts, thus making it valuable to students and practitioners. The author pays special attention to applications of microfluidics in the energy sector and provides insight into the world of opportunities nanotechnology has to offer. Figures, tables, and equations to illustrate concepts.