Biological Specimen Preparation for Transmission Electron Microscopy

Biological Specimen Preparation for Transmission Electron Microscopy

Author: Audrey M. Glauert

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 349

ISBN-13: 1400865026

DOWNLOAD EBOOK

This book contains all the necessary information and advice for anyone wishing to obtain electron micrographs showing the most accurate ultrastructural detail in thin sections of any type of biological specimen. The guidelines for the choice of preparative methods are based on an extensive survey of current laboratory practice. For the first time, in a textbook of this kind, the molecular events occurring during fixation and embedding are analysed in detail. The reasons for choosing particular specimen preparation methods are explained and guidance is given on how to modify established techniques to suit individual requirements. All the practical methods advocated are clearly described, with accompanying tables and the results obtainable are illustrated with many electron micrographs. Portland Press Series: Practical Methods in Electron Microscopy, Volume 17, Audrey M. Glauert, Editor Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Sample Preparation Handbook for Transmission Electron Microscopy

Sample Preparation Handbook for Transmission Electron Microscopy

Author: Jeanne Ayache

Publisher: Springer Science & Business Media

Published: 2010-07-03

Total Pages: 267

ISBN-13: 0387981829

DOWNLOAD EBOOK

Successful transmission electron microscopy in all of its manifestations depends on the quality of the specimens examined. Biological specimen preparation protocols have usually been more rigorous and time consuming than those in the physical sciences. For this reason, there has been a wealth of scienti?c literature detailing speci?c preparation steps and numerous excellent books on the preparation of b- logical thin specimens. This does not mean to imply that physical science specimen preparation is trivial. For the most part, most physical science thin specimen pre- ration protocols can be executed in a matter of a few hours using straightforward steps. Over the years, there has been a steady stream of papers written on various aspects of preparing thin specimens from bulk materials. However, aside from s- eral seminal textbooks and a series of book compilations produced by the Material Research Society in the 1990s, no recent comprehensive books on thin spe- men preparation have appeared until this present work, ?rst in French and now in English. Everyone knows that the data needed to solve a problem quickly are more imp- tant than ever. A modern TEM laboratory with supporting SEMs, light microscopes, analytical spectrometers, computers, and specimen preparation equipment is an investment of several million US dollars. Fifty years ago, electropolishing, chemical polishing, and replication methods were the principal specimen preparation me- ods.


Biological Electron Microscopy

Biological Electron Microscopy

Author: Michael J. Dykstra

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 368

ISBN-13: 146840010X

DOWNLOAD EBOOK

In this practical text, the author covers the fundamentals of biological electron microscopy - including fixation, instrumentation, and darkroom work - to provide an excellent introduction to the subject for the advanced undergraduate or graduate student.


Sample Preparation Handbook for Transmission Electron Microscopy

Sample Preparation Handbook for Transmission Electron Microscopy

Author: Jeanne Ayache

Publisher: Springer Science & Business Media

Published: 2010-06-08

Total Pages: 338

ISBN-13: 9781441959744

DOWNLOAD EBOOK

Successful transmission electron microscopy in all of its manifestations depends on the quality of the specimens examined. Biological specimen preparation protocols have usually been more rigorous and time consuming than those in the physical sciences. For this reason, there has been a wealth of scienti c literature detailing speci c preparation steps and numerous excellent books on the preparation of b- logical thin specimens. This does not mean to imply that physical science specimen preparation is trivial. For the most part, most physical science thin specimen pre- ration protocols can be executed in a matter of a few hours using straightforward steps. Over the years, there has been a steady stream of papers written on various aspects of preparing thin specimens from bulk materials. However, aside from s- eral seminal textbooks and a series of book compilations produced by the Material Research Society in the 1990s, no recent comprehensive books on thin specimen preparation have appeared until this present work, rst in French and now in English. Everyone knows that the data needed to solve a problem quickly are more imp- tant than ever. A modern TEM laboratory with supporting SEMs, light microscopes, analytical spectrometers, computers, and specimen preparation equipment is an investment of several million US dollars. Fifty years ago, electropolishing, chemical polishing, and replication methods were the principal specimen preparation me- ods.


Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis

Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis

Author: Patrick Echlin

Publisher: Springer Science & Business Media

Published: 2011-04-14

Total Pages: 329

ISBN-13: 0387857311

DOWNLOAD EBOOK

Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.


Electron Microscopy

Electron Microscopy

Author: John J. Bozzola

Publisher: Jones & Bartlett Learning

Published: 1999

Total Pages: 702

ISBN-13: 9780763701925

DOWNLOAD EBOOK

New edition of an introductory reference that covers all of the important aspects of electron microscopy from a biological perspective, including theory of scanning and transmission; specimen preparation; darkroom, digital imaging, and image analysis; laboratory safety; interpretation of images; and an atlas of ultrastructure. Generously illustrated with bandw line drawings and photographs. Annotation copyrighted by Book News, Inc., Portland, OR


Biological Low-Voltage Scanning Electron Microscopy

Biological Low-Voltage Scanning Electron Microscopy

Author: James Pawley

Publisher: Springer Science & Business Media

Published: 2007-12-03

Total Pages: 323

ISBN-13: 0387729720

DOWNLOAD EBOOK

Major improvements in instrumentation and specimen preparation have brought SEM to the fore as a biological imaging technique. Although this imaging technique has undergone tremendous developments, it is still poorly represented in the literature, limited to journal articles and chapters in books. This comprehensive volume is dedicated to the theory and practical applications of FESEM in biological samples. It provides a comprehensive explanation of instrumentation, applications, and protocols, and is intended to teach the reader how to operate such microscopes to obtain the best quality images.


Electron Microscopy Methods and Protocols

Electron Microscopy Methods and Protocols

Author: M. A. Nasser Hajibagheri

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 292

ISBN-13: 1592592015

DOWNLOAD EBOOK

Electron Microscopy Methods and Protocols is designed for the established researcher as a manual for extending knowledge of the field. It is also for the newcomer who wishes to move into the field. A wide range of applications for the examination of cells, tissues, biological macromolecules, molecular structures, and their interactions are discussed. We have tried to gather together methods that we consider to be those most generally appli- ble to current research in both cell and molecular biology. Each chapter c- tains a set of related practical protocols with examples provided by experts who have first-hand knowledge of the techniques they describe. The individual chapters are grouped according to similarities in their specimen preparation and methodology. Methods are presented in detail, in a step-by-step fashion, using reproducible protocols the authors have personally checked. During the last decade, the scientific literature describing the use of colloidal gold as an immunocytochemical marker has increased at an ex- nential rate, and this trend is expected to continue. We have included a large number of variations on the immunogold labeling technique. In both the ne- tive staining and cryo chapters, authors emphasize the “immunological app- cations” in order to correlate as fully as possible with the emphasis on immunogold labeling in the other chapters. Electron Microscopy Methods and Protocols commences with the routine preparation of biological material for classical transmission electron microscopy involving tissue fixation, embedding, and sectioning (Chap. 1).


Microscopy of the Heart

Microscopy of the Heart

Author: Lars Kaestner

Publisher: Springer

Published: 2018-12-07

Total Pages: 135

ISBN-13: 3319953044

DOWNLOAD EBOOK

This book provides in depths information on different microscopy approaches and supplies the reader with methods how to untangle highly complex processes involved in physiological and pathophysiological cardiac signaling. Microscopy approaches have established themselves as the quasi gold standard that enables us to appreciate the underlying mechanisms of physiological and pathophysiological cardiac signaling. This book presents the most important microscopy techniques from the level of individual molecule e.g. Förster-Resonance Energy Transfer (FRET), up to cellular and tissue imaging, e.g. electron microscopy (TEM) or light sheet microscopy. The book is intended for graduate students and postdocs in cardiovascular research, imaging and cell biology, pre-clinical and clinical researchers in cardiovascular sciences as well as decision makers of the pharmaceutical industry.


Biological Field Emission Scanning Electron Microscopy, 2 Volume Set

Biological Field Emission Scanning Electron Microscopy, 2 Volume Set

Author: Roland A. Fleck

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 741

ISBN-13: 1118654064

DOWNLOAD EBOOK

The go‐to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM) The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth. Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering: operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more. Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value Provides insight into the design and development philosophy behind current instrument manufacturers Covers sample handling, applications, and key supporting techniques Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research Presented in full colour An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.