Biological Experiments in Space

Biological Experiments in Space

Author: Galina Nechitailo

Publisher: Elsevier

Published: 2021-07-10

Total Pages: 425

ISBN-13: 0128205016

DOWNLOAD EBOOK

Biological Experiments in Space: 30 Years Investigating Life in Space Orbit covers investigations of plant, algae, animals, fish, microorganisms and tissue cultures on space flights, beginning with the first orbital space station on Salyut 1. The book includes results on the influence of the entire complex of physical factors associated with spaceflight on biological systems, including analysis of the impact of microgravity on organisms, as well as the effects of electric and magnetic fields. This book offers important insights for researchers of space biology and astrobiology, as well as space agency and industry specialists developing future space stations and missions. Lack of gravity, temperature and chemical gradients, magnetic and electrical fields, spectral composition and intensity of light, and high-energy cosmic radiation influence many important metabolic and physiological processes in animals, plants, and microorganisms, as well as transfer phenomena in and around them. Success of future space exploration depends on understanding the effects of these factors on biological organisms and developing appropriate countermeasures, aimed at improving growth, development, and reproduction in microgravity. - Includes results on the influence of the entire complex of physical factors associated with spaceflight on a range of biological systems - Analyzes the impacts of microgravity, as well as electric and magnetic fields, on organisms - Covers pioneering investigations of plants, algae, animals, fish, microorganisms and tissue culture in space flights


Recapturing a Future for Space Exploration

Recapturing a Future for Space Exploration

Author: National Research Council

Publisher: National Academies Press

Published: 2012-01-30

Total Pages: 464

ISBN-13: 0309163846

DOWNLOAD EBOOK

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.


Biotechnology in Space

Biotechnology in Space

Author: Günter Ruyters

Publisher: Springer

Published: 2017-12-21

Total Pages: 122

ISBN-13: 3319640542

DOWNLOAD EBOOK

This book summarizes the early successes, drawbacks and accomplishments in cell biology and cell biotechnology achieved by the latest projects performed on the International Space Station ISS. It also depicts outcomes of experiments in tissue engineering, cancer research and drug design and reveals the chances that research in Space offers for medical application on Earth. This SpringerBriefs volume provides an overview on the latest international activities in Space and gives an outlook on the potential of biotechnological research in Space in future. This volume is written for students and researchers in Biomedicine, Biotechnology and Pharmacology and may specifically be of interest to scientists with focus on protein sciences, crystallization, tissue engineering, drug design and cancer research.


Grand Challenges in Fungal Biotechnology

Grand Challenges in Fungal Biotechnology

Author: Helena Nevalainen

Publisher: Springer Nature

Published: 2020-01-08

Total Pages: 534

ISBN-13: 3030295419

DOWNLOAD EBOOK

This volume provides a comprehensive overview of the major applications and potential of fungal biotechnology. The respective chapters report on the latest advances and opportunities in each topic area, proposing new and sustainable solutions to some of the major challenges faced by modern society. Aimed at researchers and biotechnologists in academia and industry, it represents essential reading for anyone interested in fungal biotechnology, as well as those working within the broader area of microbial biotechnology. Written in an accessible language, the book also offers a valuable reference resource for decision-makers in government and at non-governmental organizations who are involved in the development of cleaner technologies and the global bioeconomy. The 21st century is characterized by a number of critical challenges in terms of human health, developing a sustainable bioeconomy, facilitating agricultural production, and establishing practices that support a cleaner environment. While there are chemical solutions to some of these challenges, developing bio-based approaches is becoming increasingly important. Filamentous fungi, ‘the forgotten kingdom,’ are a group of unique organisms whose full potential has yet to be revealed. Some key properties, such as their exceptional capacity to secrete proteins into the external environment, have already been successfully harnessed for the production of industrial enzymes and cellulosic biofuels. Many further aspects discussed here –such as feeding the hungry with fungal protein, and the potential applications of the various small molecules produced by fungi –warrant further exploration. In turn, the book covers the use of fungal cell factories to produce foreign molecules, e.g. for therapeutics. Strategies including molecular approaches to strain improvement, and recent advances in high-throughput technologies, which are key to finding better products and producers, are also addressed. Lastly, the book discusses the advent of synthetic biology, which is destined to greatly expand the scope of fungal biotechnology. The chapter “Fungal Biotechnology in Space: Why and How?” is available open access under a Creative Commons Attribution 4.0 International License at link.springer.com.


Space Biology and Medicine: Space and its exploration

Space Biology and Medicine: Space and its exploration

Author: Arnauld E. Nicogossian

Publisher: AIAA

Published: 1993

Total Pages: 384

ISBN-13: 9781563470615

DOWNLOAD EBOOK

In this first volume in the Space Biology and Medicine series, contributors describe the current status of their understanding of space, highlighting physical and ecological conditions as well as heavenly bodies, and provide general information that will prove useful in the later volumes. The book is divided into four parts: Part I, Historical Perspective; Part II, The Space Environment; Part III, Life in the Universe; and Part IV, Space Exploration. Chapter contributions were made by both U.S. and Russian authors. The book also features an appendix of Astronomical and Physical Quantities, a detailed subject index, and an 8-page color section.


Future Biotechnology Research on the International Space Station

Future Biotechnology Research on the International Space Station

Author: National Research Council

Publisher: National Academies Press

Published: 2000-04-14

Total Pages: 87

ISBN-13: 0309172179

DOWNLOAD EBOOK

Under current NASA plans, investigations in the area of biotechnology will be a significant component of the life sciences research to be conducted on the International Space Station (ISS). They encompass work on cell science and studies of the use of microgravity to grow high-quality protein crystals. Both these subdisciplines are advancing rapidly in terrestrial laboratories, fueled by federal and industrial research budgets that dwarf those of NASA's life science program. Forging strong and fruitful connections between the space investigations and laboratory-bench biologists, a continual challenge for NASA' s life sciences program, is thus of great importance to ensuring the excellence of ISS research. This report evaluates the plan for NASA's biotechnology facility on the ISS and the scientific context that surrounds it, and makes recommendations on how the facility can be made more effective. In addition to questions about optimizing the instrumentation, the report addresses strategies for enhancing the scientific impact and improving the outreach to mainstream terrestrial biology. No major redirection of effort is called for, but collectively the specific, targeted changes recommended by the task group would have a major effect on the conduct of biotechnology research in space.


Biocentrism

Biocentrism

Author: Robert Lanza

Publisher: ReadHowYouWant.com

Published: 2011

Total Pages: 298

ISBN-13: 1458795179

DOWNLOAD EBOOK

Robert Lanza is one of the most respected scientists in the world a US News and World Report cover story called him a genius and a renegade thinker, even likening him to Einstein. Lanza has teamed with Bob Berman, the most widely read astronomer in the world, to produce Biocentrism, a revolutionary new view of the universe. Every now and then a simple yet radical idea shakes the very foundations of knowledge. The startling discovery that the world was not flat challenged and ultimately changed the way people perceived themselves and their relationship with the world. For most humans of the 15th century, the notion of Earth as ball of rock was nonsense. The whole of Western, natural philosophy is undergoing a sea change again, increasingly being forced upon us by the experimental findings of quantum theory, and at the same time, toward doubt and uncertainty in the physical explanations of the universes genesis and structure. Biocentrism completes this shift in worldview, turning the planet upside down again with the revolutionary view that life creates the universe instead of the other way around. In this paradigm, life is not an accidental byproduct of the laws of physics. Biocentrism takes the reader on a seemingly improbable but ultimately inescapable journey through a foreign universe our own from the viewpoints of an acclaimed biologist and a leading astronomer. Switching perspective from physics to biology unlocks the cages in which Western science has unwittingly managed to confine itself. Biocentrism will shatter the readers ideas of life--time and space, and even death. At the same time it will release us from the dull worldview of life being merely the activity of an admixture of carbon and a few other elements; it suggests the exhilarating possibility that life is fundamentally immortal. The 21st century is predicted to be the Century of Biology, a shift from the previous century dominated by physics. It seems fitting, then, to begin the century by turning the universe outside-in and unifying the foundations of science with a simple idea discovered by one of the leading life-scientists of our age. Biocentrism awakens in readers a new sense of possibility, and is full of so many shocking new perspectives that the reader will never see reality the same way again.