The goal of this book is to present findings which are supportive of the concept that the words of the idiotype dictionary and likewise self-recognition are essential for communication between lymphocyte clones while some unfaithful ( infidel ) copies of the words contained in the idiotype dictionary perhaps play a role in the functional regulation of nonlymphoid cells.
Autoimmune diseases are characterized by the occurrence of antibodies reacting with self-constituents of the body. The fully updated third edition of Autoantibodies is an in-depth review of the main autoantibodies identified up to now, with particular emphasis on those that display a diagnostic or prognostic clinical value. The new edition covers recent scientific advances, diagnostic techniques, and therapeutic technologies. Each chapter is focused on a single family of autoantibodies. This important reference contains historical notes, definitions, origins and sources of antigens recognized genetic associations, mediated pathogenic mechanisms, methods of detection, as well as clinical utility (disease prevalence and association, diagnostic value, sensitivity and specificity, prognostic value). This is an ideal reference for anyone involved in the field of autoimmune diseases. - Presents all known, important autoantibodies in a single source, focusing on the antibodies needed for autoimmune disorder diagnosis - Includes clinical applications for each autoantibody along with general information - Organized by disease and disorder type, by autoantibody family, and completely cross-referenced
Idiotypy in Biology and Medicine aims to serve the increasing interest and involvement in the practical aspects of idiotypy in biological systems. The concept of idiotypy has received wide recognition and interest far beyond the area of immunology. Experiments and interpretation of findings, reported here, clearly support the general nature of the idiotype concept in manipulating biological systems to correct pathological conditions or to improve the immune adaptation to environmental factors. The book is organized into three sections. Section 1 discusses original concepts of idiotypic manipul ...
Vaccines have historically been considered to be the most cost-effective method for preventing communicable diseases. It was a vaccine~hat enabled global eradication of the dreaded disease smallpox. Mass immunization of children forms the anchor of the strategy of the World Health Organization (WHO) to attain "health for all" status by the year 2000. Vaccinology is undergoing a dimensional change with the advances that have taken place in immunology and genetic engineering. Vaccines that confer short or inadequate immunity or that have side effects are being replaced by better vaccines. New vaccines are being developed for a variety of maladies. Monoclonal antibodies and T cell clones have been employed to delineate the immunodeterminants on microbes, an approach elegantly complemented by computer graphics and molecular imaging techniques. Possibilities have opened for obtaining hitherto scarce antigens of parasites by the DNA recombinant route. Better appreciation of the idiotypic network has aroused research on anti-idiotypic vaccines. Solid-phase synthesis of peptides is leading to an array of synthetic vaccines, an approach that is expected to attain its full potential once the sequences activating suppressor cells are discovered and the rules for presentation of antigens to T and B cells are better worked out. A new breed of vaccines is on the horizon that seeks to control fertility.
Providing a unique A-Z guide to antibodies for immunohistology, this is an indispensable source for pathologists to ensure the correct application of immunohistochemistry in daily practice. Each entry includes commercial sources, clones, descriptions of stained proteins/epitopes, the full staining spectrum of normal and tumor tissues, staining pattern and cellular localization, the range of conditions of immunoreactivity, and pitfalls of the antibody's immunoprofile, giving pathologists a truly thorough quick-reference guide to sources, preparation and applications of specific antibodies. Appendices provide useful quick-reference tables of antibody panels for differential diagnoses, as well as summaries of diagnostic applications. Expanded from previous editions with over forty new entries, this handbook for diagnostic, therapeutic, prognostic and research applications of antibodies is an essential desktop book for practicing pathologists as well as researchers, residents and trainees.
This volume illustrates the functional properties of NAbs. Authors from pioneering groups report in their chapters on the tissue homeostatic, tissue regenerating and regulatory properties of NAbs and NAbs in pooled human IgG. Scientists interested in the regulation and modulation of components of the immune system found a whole variety of NAbs to cytokines with regulatory and protective functions and NAbs that modulate, e.g., dendritic cells, regulatory T cells, B cells and granulocytes. Considering the large plasma pools and initial difficulties in preparing IVIG that does not induce adverse effects upon infusion into recipients, this volume ends with a historical chapter on how pooled human plasma was fractionated and the IgG component pretreated for a safe intravenous application.
Fungi: Biology and Applications, Second Edition provides a comprehensive treatment of fungi, covering biochemistry, genetics and the medical and economic significance of these organisms at introductory level. With no prior knowledge of the subject assumed, the opening chapters offer a broad overview of the basics of fungal biology, in particular the physiology and genetics of fungi and also a new chapter on the application of genomics to fungi. Later chapters move on to include more detailed coverage of topics such as antibiotic and chemical commodities from fungi, new chapters on biotechnological use of fungal enzymes and fungal proteomics, and fungal diseases of humans, antifungal agents for use in human therapy and fungal pathogens of plants.
The network paradigm dominated immunological research from the early 1970s to the late 1980s. The originator, Niels Jerne, hypothesized that the vast diversity of antibodies in each individual forms a network of mutual "idiotypic" recognition, thus regulating the immune system. In context of emerging concepts of systems biology such as cybernetics and autopoesis, the "Eigenbehavior" of the immune system fascinated an entire generation of young immunologists. But fascination led to experimental errors and overinterpretation, eventually magnifying the immune system from a mere infection-fighting device to a substrate of personality and individuality. As a result, what initially appeared as an exciting new perspective of the immune system is now viewed as a scientific vagary, and is largely abandoned. The author, himself a participant in the network vagary, begins with a description of the leading theoretical concepts on fact finding in science. This is followed by a historical account of the rise and fall of the network paradigm, complemented by personal interviews with some of the prominent protagonists. By comparing the network paradigm to other, more lasting concepts in life science, the author develops a general perspective on how solid knowledge is derived from error-prone scientific methodology, namely by exposure of scientific notions to the scrutiny of reality.
This is the most comprehensive review of the idiotypic network available. All the current knowledge of idiotypes of the various antibodies is incorporated in this volume. The pathogenic role of idiotypes in autoimmunity and cancer is reviewed in depth. The therapeutic part focusses on harnessing anti-idiotypes for treating autoimmunological disorders, and on the employment of idiotypes for vaccines in cancer and infectious diseases, as well as explaining the manipulation of the idiotypic network in autoimmunity and cancer idiotypes and vaccines.