This is the second issue of the Research Topic: Biogeochemistry and Genomics of Silicification and Silicifiers. The first issue article collection can be found here: https://www.frontiersin.org/research-topics/5364/biogeochemistry-and-genomics-of-silicification-and-silicifiers Silicifiers are among the most important living organisms of planet Earth. They are able to take advantage of the abundance of silicon in the Earth crust to build silicified architectures, which in particular can help for protection against predators or for facilitating the penetration of light and nutrients to the cells.
This comprehensive book provides a unique overview of advances in the biology and ecology of marine protists. Nowadays marine protistology is a hot spot in science to disclose life phenomena using the latest techniques. Although many protistological textbooks deal with the cytology, genetics, ecology, and pathology of specific organisms, none keeps up with the quick pace of new discoveries on the diversity and dynamics of marine protists in general. The bookMarine Protists: Diversity and Dynamics gives an overview of current research on the phylogeny, cytology, genomics, biology, ecology, fisheries, applied sciences, geology and pathology of marine free-living and symbiotic protists. Poorly known but ecologically important protists such as labyrinthulids and apostome ciliates are also presented in detail. Special attention is paid to complex interactions between marine protists and other organisms including human beings. An understanding of the ecological roles of marine protists is essential for conservation of nature and human welfare. This book will be of great interest not only to scientists and students but also to a larger audience, to give a better understanding of protists’ diverse roles in marine ecosystems.
Do you know silica, the tetrahedra of silicon and oxygen constituting the crystals of New Agers and the desiccant in a box of new shoes? It's no mere mundane mineral. As chemically reacting silicate rocks, silica set off the chain of events known as the origin of life. As biomineralized opal, it is the cell wall, skeleton, spicules, and scales of organisms ornamenting numerous lobes of the tree of life. Cryptocrystalline silica made into stone tools helped drive the evolution of our hands and our capability for complex grammar, music, and mathematics. As quartz crystals, silica is impressively electric and ubiquitous in modern technology (think sonar, radios, telephones, ultrasound, and cheap but precise watches). Silica is inescapable when we take a drink or mow the lawn and it has already started to save the Earth from the carbon dioxide we're spewing into the atmosphere. This book tells these scientific tales and more, to give dear, modest silica its due.
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Planktonic protists both produce and consume most of the primary production in the world ocean. They not only play key roles in the oceans but also represent an astounding amount of diversity: ecological morphological and genetic. However, for most taxa their ecology, morphology, phylogeny and biogeography are either poorly known or appear to be largely unrelated to one another; this hinders our understanding of their biology as well as interpretation of emerging genetic data. Tintinnid ciliates represent a singular exception. Compared to nearly all other groups of planktonic protists, there is a very substantial and relatively detailed literature (both modern and historical) on tintinnids. This volume synthesizes knowledge concerning a wide variety of topics ranging from anatomy and systematics, physiology, behavior, ecology (including ecological roles, predators, parasites, biogeography, and cysts) to fossil history. It will appeal to an audience ranging from advanced undergraduates to researchers in the fields of Oceanography, Marine Biology and Microbial Ecology.
DIATOM MORPHOGENESIS A unique book presenting the range of silica structures formed by diatoms, theories and hypotheses of how they are made, and applications to nanotechnology by use or imitation of diatom morphogenesis. There are up to 200,000 species of diatoms, each species of these algal cells bearing an ornate, amorphous silica glass shell. The silica is structured at 7 orders of magnitude size range and is thus the most complex multiscalar solid structure known. Recent research is beginning to unravel how a single cell marshals chemical, physical, biochemical, genetic, and cytoskeletal processes to produce these single-cell marvels. The field of diatom nanotechnology is advancing as this understanding matures. Diatoms have been actively studied over the recent 10-20 years with various modern equipment, experimental and computer simulation approaches, including molecular biology, fluorescence-based methods, electron, confocal, and AFM microscopy. This has resulted in a huge amount of information but the key stages of their silica morphogenesis are still not clear. This is the time to reconsider and consolidate the work performed so far and to understand how we can go ahead. The main objective of this book is to describe the actual situation in the science of diatom morphogenesis, to specify the most important unresolved questions, and to present the corresponding hypotheses. The following areas are discussed: A tutorial chapter, with a glossary for newcomers to the field, who are often from outside of biology, let alone phycology; Diatom Morphogenesis: general issues, including symmetry and size issues; Diatom Morphogenesis: simulation, including analytical and numerical methods for description of the diatom valve shape and pore structure; Diatom Morphogenesis: physiology, biochemistry, and applications, including the relationship between taxonomy and physiology, biosilicification hypotheses, and ideas about applications of diatoms. Audience Researchers, scientists, and graduate students in the fields of phycology, general biology, marine sciences, the chemistry of silica, materials science, and ecology.
Biomineralization is a hot topic in the area of materials, and this volume in the Metals Ions in Life Sciences series takes a systematic approach, dealing with all aspects from the fundamentals to applications. Key biological features of biomineralization, such as gene directed growth and the role of enzymes are covered, as are new areas, including copper/zinc in the jaws of invertebrates or magnetic biomaterials that help birds with navigation
Synthesis of Inorganic Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems. - Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods - Presents the latest advances in synthesis protocols - Includes the latest techniques used in the physical and chemical characterization of nanomaterials - Covers the characterization of all the important materials groups, such as carbon nanostructures, core-shell quantum dots, metal and metal oxide nanostructures, Nano ferrites, polymer nanostructures and nanofibers