The book covers the microbiological, environmental and biotechnological aspects of alkane production. Alkanes are important energy-rich compounds on earth. Microbial synthesis of methane and other alkanes is an essential part of the geochemical cycling of carbon and offers perspectives for our biobased economy. This book discusses different aspects of current knowledge of microbial alkane production. Chapters with state of the art information are written by renowned scientists in the field. The chapters are organised into four themed parts:1. Biochemistry of Biogenesis - Hydrocarbons2. Taxonomy, Ecophysiology and Genomics of Biogenesis - Hydrocarbons3. Biogenic Communities: Members, Functional Roles4. Global Consequences of Methane Production
A unique and critical analysis of the wealth of research conducted on the biology, biochemistry and chemical ecology of the rapidly growing field of insect cuticular hydrocarbons. Authored by leading experts in their respective fields, the twenty chapters show the complexity that has been discovered in the nature and role of hydrocarbons in entomology. Covers, in great depth, aspects of chemistry (structures, qualitative and quantitative analysis), biochemistry (biosynthesis, molecular biology, genetics, evolution), physiology, taxonomy, and ecology. Clearly presents to the reader the array of data, ideas, insights and historical disagreements that have been accumulated during the past half century. An emphasis is placed on the role of insect hydrocarbons in chemical communication, especially among the social insects. Includes the first review on the chemical synthesis of insect hydrocarbons. The material presented is a major resource for current researchers and a source of ideas for new researchers.
Biogenesis of Natural Compounds, Second Edition is released to provide updated information on the biogenesis of natural compounds. Most of the chapters in this book are rewritten, and new author contributes a paper on the biogenesis of proteins. This edition also includes a new chapter that deals with the formation of carcinogenic polynuclear hydrocarbons. However, all other chapters are maintained; some of which have modified headings. This edition will help those studying the biogenesis of natural compounds and in need of more updated information compared to those presented in the previous edition.
Concise chapters, written by experts in the field, cover a wide spectrum of topics on lipid and membrane formation in microbes (Archaea, Bacteria, eukaryotic microbes).All cells are delimited by a lipid membrane, which provides a crucial boundary in any known form of life. Readers will discover significant chapters on microbial lipid-carrying biomolecules and lipid/membrane-associated structures and processes.
"Starting with photosynthesis, the authors present a very lucid and logical approach from CO[subscript 2] and H[subscript 2]O to complicated structures of alkaloids, terpenes and many other natural products based on the basic principles of Organic reaction mechanism which though taken from other research studies, have been shown to be followed in nature. In addition to the basic formulations of Acetate hypothesis, and Mevlonic pathways, newer non-mevalonic paths have also been discussed and differences pointed out. This book discusses natural products in which basic principles are involved e.g. in alkaloids biosynthesis and basic amino acids which show their pathway in biosynthesis." "The material has been arranged in a sequence as to how a teacher of biosynthesis should/would teach this subject."--BOOK JACKET.
This guide covers classes of natural products in medicine, whether derived from plants, micro-organisms or animals. Structured according to biosynthetic pathway, it is written from a chemistry-based approach.
Biofuels for Aviation: Feedstocks, Technology and Implementation presents the issues surrounding the research and use of biofuels for aviation, such as policy, markets, certification and performance requirements, life cycle assessment, and the economic and technical barriers to their full implementation. Readers involved in bioenergy and aviation sectors—research, planning, or policy making activities—will benefit from this thorough overview. The aviation industry's commitment to reducing GHG emissions along with increasing oil prices have sparked the need for renewable and affordable energy sources tailored to this sector's very specific needs. As jet engines cannot be readily electrified, turning to biofuels is the most viable option. However, aviation is a type of transportation for which traditional biofuels, such as bioethanol and biodiesel, do not fulfill key fuel requirements. Therefore, different solutions to this situation are being researched and tested around the globe, which makes navigating this scenario particularly challenging. This book guides readers through this intricate subject, bringing them up to speed with its current status and future prospects both from the academic and the industry point of view. Science and technology chapters delve into the technical aspects of the currently tested and the most promising technology in development, as well as their respective feedstocks and the use of additives as a way of adapting them to meet certain specifications. Conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch are explored and their results are assessed for current and future viability. - Presents the current status of biofuels for the aviation sector, including technologies that are currently in use and the most promising future technologies, their production processes and viability - Explains the requirements for certification and performance of aviation fuels and how that can be achieved by biofuels - Explores the economic and policy issues, as well as life cycle assessment, a comparative techno-economic analysis of promising technologies and a roadmap to the future - Explores conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch
Emphasis is placed on the elaborate cuticular matrices in insects and crustaceans, spider and insect silks, sialomes of phytophagous and blood-feeding arthropods as well as on secretions of male and female accessory glands. Focus is placed largely on insects, due to the extensive body of published research that in part is the result of available whole genome sequences of several model species (in particular Drosophila melanogaster) and accessible ESTs for other species. Such advances have facilitated fundamental insights into genomic, proteomic and molecular biology-based physiology. This new volume contains comprehensive contributions on extracellular composite matrices in arthropods. The building blocks of such matrices are formed in and secreted by single layered epithelial cells into exterior domains where their final assembly takes place.Additionally, the unique mechanical properties of natural biocomposites like chitin/chitosan, the crustacean mineralized exoskeleton, the pliant protein resilin or insect and spider silks, have inspired basic and applied research that yield sophistical biomimetics and structural biocomposite hybrids important for future industrial and biomedical use. In summary, this book provides an invaluable vast source of basic and applied information for a plethora of scientists as well as textbook for graduate and advanced undergraduate students.
The growing concern about where energy rich chemicals for the future will come from has stimulated a resurgence of interest in the potentialities of microbial fermentations to assist in meeting anti cipated demands for fuels and chemicals. While much attention has been given recently to the early deployment of alcohol production plants and similar currently available technologies, the potential future developments have received much less attention. One of the intentions of the present symposium was to look ahead and try to perceive some of the prospects for future fermentation technology. In order to accomplish this, a symposium program of sizable diversity was developed with workers giving a representative cross section of their particular specialty as an indicator of the status of basic information in their area. In addition, an attempt was made to elicit from the various participants the types of fundamental infor mation which should be generated in the coming years to enable new fermentation technology to proceed expeditiously. In organizing the symposium particular effort was made to involve workers from the academic, industrial and governmental scientific communities.