Design and Optimization of Biogas Energy Systems

Design and Optimization of Biogas Energy Systems

Author: Prashant Baredar

Publisher: Academic Press

Published: 2020-07-02

Total Pages: 336

ISBN-13: 0128227184

DOWNLOAD EBOOK

Design and Optimization of Biogas Energy Systems presents an overview on planning, implementing, assessing and optimizing biogas systems, from fuel conversion to power generation. The book introduces the fundamental elements of bioenergy systems, highlighting the specificities of biogas systems. It discusses the current state of their adoption at a global level and the challenges faced by designers and operators. Methods for sizing, simulating and modeling are discussed, including prefeasibility analysis, available production processes, integration into hybrid energy systems, and the application of Big Data analysis and game theory concepts. All chapters include real-life examples and exercises to illustrate the topics being covered. The book goes beyond theory to offer practical knowledge of methods to reach solutions to key challenges in the field. This is a valuable resource for researchers, practitioners and graduate students interested in developing smart, reliable and sustainable biogas technologies. Provides an applied approach to biogas systems, from technology fundamentals, to economic and environmental assessment Explores control methods and reliability prediction of each system component, including modeling and simulation with HOMER and MATLAB Discusses the use of Big Data analysis, numerical methods, and Game Theory for plant assessment


Sustainable Food Waste-to-Energy Systems

Sustainable Food Waste-to-Energy Systems

Author: Thomas Trabold

Publisher: Academic Press

Published: 2018-09-05

Total Pages: 294

ISBN-13: 0128111585

DOWNLOAD EBOOK

Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field. Provides guidance on how specific food waste characteristics drive possible waste-to-energy conversion processes Presents methodologies for selecting among different waste-to-energy options, based on waste volumes, distribution and properties, local energy demand (electrical/thermal/steam), opportunities for industrial symbiosis, regulations and incentives and social acceptance, etc. Contains tools to assess potential environmental and economic performance of deployed systems Links to publicly available resources on food waste data for energy conversion


Design and Optimization of Biogas Energy Systems

Design and Optimization of Biogas Energy Systems

Author: Prashant Baredar

Publisher: Academic Press

Published: 2020-06-18

Total Pages: 337

ISBN-13: 0128227192

DOWNLOAD EBOOK

Design and Optimization of Biogas Energy Systems presents an overview on planning, implementing, assessing and optimizing biogas systems, from fuel conversion to power generation. The book introduces the fundamental elements of bioenergy systems, highlighting the specificities of biogas systems. It discusses the current state of their adoption at a global level and the challenges faced by designers and operators. Methods for sizing, simulating and modeling are discussed, including prefeasibility analysis, available production processes, integration into hybrid energy systems, and the application of Big Data analysis and game theory concepts. All chapters include real-life examples and exercises to illustrate the topics being covered. The book goes beyond theory to offer practical knowledge of methods to reach solutions to key challenges in the field. This is a valuable resource for researchers, practitioners and graduate students interested in developing smart, reliable and sustainable biogas technologies. Provides an applied approach to biogas systems, from technology fundamentals, to economic and environmental assessment Explores control methods and reliability prediction of each system component, including modeling and simulation with HOMER and MATLAB Discusses the use of Big Data analysis, numerical methods, and Game Theory for plant assessment


The Biogas Handbook

The Biogas Handbook

Author: Arthur Wellinger

Publisher: Elsevier

Published: 2013-02-19

Total Pages: 507

ISBN-13: 085709498X

DOWNLOAD EBOOK

With increasing pressures to utilize wastes effectively and sustainably, biogas production represents one of the most important routes towards reaching renewable energy targets. This comprehensive reference on the development and deployment of biogas supply chains and technology reviews the role of biogas in the energy mix and outlines the range of biomass and waste resources for biogas production. Contributors provide detailed coverage of anaerobic digestion for the production of biogas and review the utilization of biogas for various applications. They consider all aspects in the biogas production chain from the origin of the biomass feedstocks, feedstock selection and preparation, the anaerobic digestion process, biogas plant equipment design and operation, through to utilization of the biogas for energy production and the residue, the digestate, which can be used as a biofertilizer. The book also addresses biogas utilization, and explores environmental impacts and commercial market applications. Table of Contents: Biogas as an energy option: An overview Part 1 Biomass resources, feedstock treatment and biogas production: Biomass resources for biogas production; Analysis and characterisation of biogas feedstocks; Storage and pre-treatment of substrates for biogas production; Fundamental science and engineering of the anaerobic digestion process for biogas production; Optimisation of biogas yields from anaerobic digestion by feedstock type; Anaerobic digestion as a key technology for biomass valorisation: Roles and contribution to the energy balance of biofuel chains Part 2 Plant design, engineering, process optimisation and digestate utilization: Design and engineering of biogas plants; Energy flows in biogas plants: Analysis and implications for plant design; Process control in biogas plants; Methane emissions in biogas production; Biogas digestate quality and utilization; Land application of digestate Part 3 Biogas utilisation: international experience and best practice: Biogas cleaning; Biogas up-grading to biomethane; Biomethane injection into natural gas networks; Generation of heat and power from biogas for stationery applications: Boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells; Biomethane for transport applications; Market development and certification schemes for biomethane


Biogas Systems

Biogas Systems

Author: K. M. Mital

Publisher: Taylor & Francis

Published: 1997

Total Pages: 304

ISBN-13: 9788122411041

DOWNLOAD EBOOK

This Book Is Written With Special Focus On Issues Relating To Policies And Strategies For Planning And Implementation Of Biogas Programme. The Book Provides A Detailed Overview Of Biogas Technology Covering All The Facets. It Provides Comprehensive History And Progress Of Biomethanation In Select Countries And Regions Where It Has Made Special Mark. It Provides A Detailed Overview Of Developments In India Covering Historical Perspectives, Biogas Potential, Chronological Progress Of Biomethanation, And Enumerates References Made To Biogas At Important Seminars And Conferences By Eminent Personalities From India And Abroad. It Comprehensively Spells Out Various Implementation Strategies Particularly The Turnkey Approach Which Is Largely Responsible For Bringing Biogas Revolution In India Judging By The Unprecedented Spurt In The Number Of Biogas Plants Installed In Recent Years.It Consolidates The Findings And Recommendations Of Several Socio-Economic Surveys On Biomethanation Undertaken In Past In India From Time To Time. It Presents Case-Studies Of Several Community Biogas Plants Which Have Greatly Helped In Improving The Rural Economy. It Also Provides An Overview Of Energy Needs Of Developing Countries, Reviews Integrated Rural Energy Programme (Irep) And The Urjagram Programmes Of The Union Government As Supportive Programmes For Biomethanation, And Views Biogas Programme As An Instrument Of Sustainable Development. It Discusses At Length The Economics And Cost- Effectiveness Of Biogas Systems.The Book Also Identifies Areas For Further Studies And Looks Forward That Biomethanation Will Scale New Eights Even When The Subsidies Are Completely Withdrawn And Market-Driven Approach Under The New Economic Policy Governs The Biogas Programme. In Short, The Book Covers All Related Aspects Involving Policies, Progress And Prospects Of Biomethanation In India And Abroad.


Emerging Technologies and Biological Systems for Biogas Upgrading

Emerging Technologies and Biological Systems for Biogas Upgrading

Author: Nabin Aryal

Publisher: Academic Press

Published: 2021-03-31

Total Pages: 530

ISBN-13: 0323853552

DOWNLOAD EBOOK

Emerging Technologies and Biological Systems for Biogas Upgrading systematically summarizes the fundamental principles and the state-of-the-art of biogas cleaning and upgrading technologies, with special emphasis on biological processes for carbon dioxide (CO2), hydrogen sulfide (H2S), siloxane, and hydrocarbon removal. After analyzing the global scenario of biogas production, upgrading and utilization, this book discusses the integration of methanation processes to power-to-gas systems for methane (CH4) production and physiochemical upgrading technologies, such as chemical absorption, water scrubbing, pressure swing adsorption and the use of membranes. It then explores more recent and sustainable upgrading technologies, such as photosynthetic processes using algae, hydrogen-mediated microbial techniques, electrochemical, bioelectrochemical, and cryogenic approaches. H2S removal with biofilters is also covered, as well as removal of siloxanes through polymerization, peroxidation, biological degradation and gas-liquid absorption. The authors also thoroughly consider issues of mass transfer limitation in biomethanation from waste gas, biogas upgrading and life cycle assessment of upgrading technologies, techno-economic aspects, challenges for upscaling, and future trends. Providing specific information on biogas upgrading technology, and focusing on the most recent developments, Emerging Technologies and Biological Systems for Biogas Upgrading is a unique resource for researchers, engineers, and graduate students in the field of biogas production and utilization, including waste-to-energy and power-to-gas. It is also useful for entrepreneurs, consultants, and decision-makers in governmental agencies in the fields of sustainable energy, environmental protection, greenhouse gas emissions and climate change, and strategic planning. Explores all major technologies for biogas upgrading through physiochemical, biological, and electrochemical processes Discusses CO2, H2S, and siloxane removal techniques Provides a systematical approach to discuss technologies, including challenges to gas–liquid mass transfer, life cycle assessment, technoeconomic implications, upscaling and systems integration


Biogas Technology

Biogas Technology

Author: Snehasish Mishra

Publisher: New India Publishing Agency

Published: 2019-07-28

Total Pages: 6

ISBN-13: 9387973522

DOWNLOAD EBOOK

Biogas is a renewable energy resource that can be an alternative solution for the world's insatiable energy demands while helping in managing waste and reducing the greenhouse gas (GHG) emissions. It is also regarded as carbon neutral as the carbon in biogas comes from organic matter (feedstock) that captured this carbon from atmospheric CO2 over a relatively short timescale. This book has been written and compiled to collate latest information on biogas technology to help readers, researchers and extension workers alike to understand the fruitful exploitation of the process. It has fourteen chapters, primarily in three major categories: 01. the first category dealing with the basic biomethanation process including its ecology, microbiology, biochemistry and molecular biology. 02. the second category dealing with the evolution of the technology in Indian/global scenario from the lab to the land 03. the last category is dealing with the economics of the technology. All the various known and active names in this field of research and development have put their hearts and minds into their contributed chapters. The additional details provided in the Annexures (viz., Model bankable scheme for biogas commercialisation venture; Frequently asked questions in adopting biogas technology; Common terminologies in biogas research; Glossary of abbreviations and symbols frequently used in biogas research; and Prominent global entities in biogas R&D and commercialisation) double the usefulness of the compilation.


Renewable Energy Systems from Biomass

Renewable Energy Systems from Biomass

Author: Vladimir Strezov

Publisher: CRC Press

Published: 2018-11-16

Total Pages: 277

ISBN-13: 1351650025

DOWNLOAD EBOOK

New innovations are needed for the invention of more efficient, affordable, sustainable and renewable energy systems, as well as for the mitigation of climate change and global environmental issues. In response to a fast-growing interest in the realm of renewable energy, Renewable Energy Systems: Efficiency, Innovation and Sustainability identifies a need to synthesize relevant and up-to-date information in a single volume. This book describes a systems approach to renewable energy, including technological, political, economic, social and environmental viewpoints, as well as policies and benefits. This unique and concise text, encompassing all aspects of the field in a single source, focuses on truly promising innovative and affordable renewable energy systems. Key Features: Focuses on innovations in renewable energy systems that are affordable and sustainable Collates the most relevant and up-to-date information on renewable energy systems, in a single and unique volume Discusses lifecycle assessment, cost and availability of systems Emphasizes bio-related topics Provides a systems approach to the renewable energy technologies and discusses technological, political, economic, social, and environmental viewpoints as well as policies