This book provides a comprehensive overview on biotechnological applications of unicellular and multicellular fungi in a variety of industrial branches. Targeted genetic and metabolic engineering of fungi allows production of native and transgenic enzymes and proteins in industrial scales. Those most prominently find application in biorefineries for the production of value-added chemicals and biofuels, in the pharmaceutical industry as well as in biomedicine. Each chapter is dedicated to applications and potential beneficial use of particular strains of yeasts and filamentous fungi and their produced biomolecules. The book targets researchers from both academia and industry and graduate students working in microbial biotechnology.
Biotechnology and Biology of Trichoderma serves as a comprehensive reference on the chemistry and biochemistry of one of the most important microbial agents, Trichoderma, and its use in an increased number of industrial bioprocesses for the synthesis of many biochemicals such as pharmaceuticals and biofuels. This book provides individuals working in the field of Trichoderma, especially biochemical engineers, biochemists and biotechnologists, important information on how these valuable fungi can contribute to the production of a wide range of products of commercial and ecological interest. - Provides a detailed and comprehensive coverage of the chemistry, biochemistry and biotechnology of Trichoderma, fungi present in soil and plants - Includes most important current and potential applications of Trichoderma in bioengineering, bioprocess technology including bioenergy & biofuels, biopharmaceuticals, secondary metabolites and protein engineering - Includes the most recent research advancements made on Trichoderma applications in plant biotechnology and ecology and environment
Fungi are an understudied, biotechnologically valuable group of organisms. Due to their immense range of habitats, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. However, besides their major basic positive role in the cycling of minerals, organic matter and mobilizing insoluble nutrients, fungi have other beneficial impacts: they are considered good sources of food and active agents for a number of industrial processes involving fermentation mechanisms as in the bread, wine and beer industry. A number of fungi also produce biologically important metabolites such as enzymes, vitamins, antibiotics and several products of important pharmaceutical use; still others are involved in the production of single cell proteins. The economic value of these marked positive activities has been estimated as approximating to trillions of US dollars. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Since ancient Egyptians mentioned in their medical prescriptions how they can use green molds in curing wounds as the obvious historical uses of penicillin, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential. Volume 1 of Industrially Important Fungi for Sustainable Development provides an overview to understanding fungal diversity from diverse habitats and their industrial application for future sustainability. It encompasses current advanced knowledge of fungal communities and their potential biotechnological applications in industry and allied sectors. The book will be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, and environmental biology.
Fungi are eukaryotic microorganisms that include both unicellular and multicellular species. They have a worldwide distribution and a wide range of applications in diverse sectors, from environmental, food and medicine to biotechnological innovations. Fungal biochemical genetics involves the study of the relationships between genome, proteome and metabolome, and the underlying molecular processes in both native and bioengineered fungi. This book provides a valuable resource on the challenges and potential of fungal biotechnology and related bioengineering and functional diversity for various industrial applications in the food, environmental, bioenergy and biorefining, and the biopharma sectors. In comparison to previous and related publications in the area of applied myco-biotech-engineering, this book bridges a knowledge gap in the areas related to prospects and investment as well as intellectual and technical issues. This book also provides information on recent commercial and economic interests in the area by juxtaposing the developments achieved in recent worldwide research and its many challenges.
Fungi are the largest group among living organisms after insects. The total fungal species is estimated to be 1.5 million, of which 72,000 have been reported and ~1500 are added every year. Fungi are used in various biotechnological applications such as in the pharmaceutical and agrochemical industries, in bioremediation, biological control, as natural scavengers, for recycling of elements, dyes, etc. This book attempts to cover the various aspects of fungi. This book will add substantially to the knowledge of fungal diversity and its applications in specific areas and bring the information under one umbrella.
Mushroom Biotechnology: Developments and Applications is a comprehensive book to provide a better understanding of the main interactions between biological, chemical and physical factors directly involved in biotechnological procedures of using mushrooms as bioremediation tools, high nutritive food sources, and as biological helpers in healing serious diseases of the human body. The book points out the latest research results and original approaches to the use of edible and medicinal mushrooms as efficient bio-instruments to reduce the environment and food crises. This is a valuable scientific resource to any researcher, professional, and student interested in the fields of mushroom biotechnology, bioengineering, bioremediation, biochemistry, eco-toxicology, environmental engineering, food engineering, mycology, pharmacists, and more. - Includes both theoretical and practical tools to apply mushroom biotechnology to further research and improve value added products - Presents innovative biotechnological procedures applied for growing and developing many species of edible and medicinal mushrooms by using high-tech devices - Reveals the newest applications of mushroom biotechnology to produce organic food and therapeutic products, to biologically control the pathogens of agricultural crops, and to remove or mitigate the harmful consequences of quantitative expansion and qualitative diversification of hazardous contaminants in natural environment
New and Future Developments in Microbial Biotechnology and Bioengineering: Phytomicrobiome for Sustainable Agriculture provides a comprehensive overview of the phytomicrobiome and a holistic approach for its various mechanisms, including plant growth, nutrient content, crop yield improvement, soil fertility, and health management. This book explores the genus- and species-specific endophytic microbes for developing an efficient indigenous microbial consortium for enhancing the productivity of sustainable agriculture. An essential resource for students, researchers, and scientists in the fields of biotechnology, microbiology, agronomy, and the plant protection sciences, New and Future Developments in Microbial Biotechnology and Bioengineering: Phytomicrobiome for Sustainable Agriculture highlights the plant growth-promoting activities of the phytomicrobiome and focuses on both its basic and applied aspects and the significant role they play in plant protection. - Emphasizes up-to-date research on sustainability, proteomics and genomics, and functional and molecular mechanisms of plant-microbe-soil interactions - Covers multidisciplinary features of plant microbiology, plant physiology, soil science, and sustainable agriculture - Includes the significance of microbial secondary metabolites for enhancing plant growth attributes - Focuses on the most recent developments in biotechnology to enhance the action of the phytomicrobiome as an alternative to chemical fertilizers for agriculture and forestry
A part of the Food Microbiology Series, Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi reveals similarities between fungi present in/on food and water and those that cause human fungal diseases. The book covers food borne mycotoxigenic fungi in depth and examines food borne fungi from the standpoint of mycoses (i.e. funga
Fungi are an essential, fascinating and biotechnologically useful group of organisms with an incredible biotechnological potential for industrial exploitation. Knowledge of the world’s fungal diversity and its use is still incomplete and fragmented. There are many opportunities to accelerate the process of filling knowledge gaps in these areas. The worldwide interest of the current era is to increase the tendency to use natural substances instead of synthetic ones. The increasing urge in society for natural ingredients has compelled biotechnologists to explore novel bioresources which can be exploited in industrial sector. Fungi, due to their unique attributes and broad range of their biological activities hold great promises for their application in biotechnology and industry. Fungi are an efficient source of antioxidants, enzymes, pigments, and many other secondary metabolites. The large scale production of fungal pigments and their utility provides natural coloration without creating harmful effects on entering the environment, a safer alternative use to synthetic colorants. The fungal enzymes can be exploited in wide range of industries such as food, detergent, paper, and also for removal toxic waste. This book will serve as valuable source of information as well as will provide new directions to researchers to conduct novel research in field of mycology. Volume 2 of “Industrially Important Fungi for Sustainable Development” provides an overview to understanding bioprospecting of fungal biomolecules and their industrial application for future sustainability. It encompasses current advanced knowledge of fungal communities and their potential biotechnological applications in industry and allied sectors. The book will be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, and environmental biology.