Assuming no mathematical or chemistry knowledge, this book introduces complete beginners to the field of petroleum engineering. Written in a straightforward style, the author takes a practical approach to the subject avoiding complex mathematics to achieve a text that is robust without being intimidating. Covering traditional petroleum engineering topics, readers of this book will learn about the formation and characteristics of petroleum reservoirs, the chemical properties of petroleum, the processes involved in the exploitation of reservoirs, post-extraction processing, industrial safety, and the long-term outlook for the oil and gas production. The descriptions and discussions are informed by considering the production histories of several fields including the Ekofisk field in the North Sea, the Wyburn Field in Canada, the Manifa Field in Saudi Arabia and the Wilmington Field off the Californian Coast. The factors leading up to the well blowouts on board the Deepwater Horizon in the Gulf of Mexico and in the Mantara Field in the Timor Sea are also examined. With a glossary to explain key words and concepts, this book is a perfect introduction for newcomers to a petroleum engineering course, as well as non-specialists in industry. Professor David Shallcross is one of the foremost practitioners in chemical engineering education worldwide. Readers of this book will find his previous book, Chemical Engineering Explained, a useful companion.
Nanomaterials and Polymer Nanocomposites: Raw Materials to Applications brings together the most recent research in nanoparticles and polymer nanocomposites for a range of applications. The book's coverage is comprehensive, starting with synthesis techniques, then moving to characterization and applications of several different classes of nanomaterial and nanoparticle in nanocomposites. By presenting different nanomaterials, such as metal and metal oxides, clay and POSS, carbon nanotubes, cellulose and bio-based polymers in a structured manner, the book enables an efficient comparison of properties and capabilities for these advanced materials, making it relevant both for researchers in an academic environment and also industrial R&D. This book is particularly distinctive because it centers on the raw materials on which the nanocomposites are based, the biological properties of the range of materials discussed, and the environmental and economic considerations of different polymer systems. - Presents a thorough, up-to-date review of the latest advances and developments in the field of nanomaterials and polymer nanocomposites, with a particular focus on raw materials - Includes comprehensive coverage from historical backgrounds, synthesis techniques, characterization, and a detailed look at new and emerging applications for polymer nanocomposites - Provides a range of different material classes, including metal and metal oxides, biopolymers, graphene and cellulose, among others
Advanced Polymer Nanocomposites: Science Technology and Applications presents a detailed review of new and emerging research outcomes from fundamental concepts that are relevant to science, technology and advanced applications. Sections cover key drivers such as the rising demand for lightweight and high strength automotive parts, the need for sustainable packaging materials and conservation of flavor in the food, drinks and beverages industries, and defense initiatives such as ballistic protection, fire retardation and electromagnetic shielding. With contributions from international authors working at the cutting-edge of research, this book will be an essential reference resource for materials scientists, chemists, manufacturers and polymer engineers. Through recent advances in nanotechnology, researchers can now manipulate atoms to create materials and products that are changing the way we live our lives. These materials have enhanced properties, such as tensile strength, impact and scratch resistance, electrical and thermal conductivity, thermal stability and fire resistance. Combines processing, properties and advanced commercial applications Emphasizes synthesis and fabrication techniques Focuses on environmental and health aspects Covers future challenges, opportunities, recycling and sustainability Contains contributions from high-profile, cutting-edge international researchers
This textbook covers the fundamentals of different functional material systems aimed at advanced undergraduate and postgraduate students. Each chapter includes an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, topics include piezoelectric materials, magnetostrictive materials, shape memory alloys, mechanochromic materials, chemomechanical polymers and self-healing materials.
The polyurethane industry is among the fastest growing, with polyurethanes used in consumer as well as industrial sectors. Waterborne polyurethanes (WPUs) exhibit many advantages over conventional volatile organic compounds (VOCs) based polyurethanes and have emerged as an environmentally friendly alternative. WPUs offer an opportunity to use sustainable raw materials to produce environmentally sustainable polymers, particularly, polyols derived from vegetable oils. Eco-Friendly Waterborne Polyurethanes: Synthesis, Properties, and Applications provides state-of-the-art knowledge of the synthesis, application, and property enhancement of WPUs. Covers various types of eco-friendly materials and technologies used to synthesize WPUs Presents an overview and applications of WPUs in several advanced research areas Provides fundamentals of synthetic processes and their chemistries for specific applications Elaborates on advanced approaches used to convert renewable resources into polymers Offers new direction to scientists, researchers, and students to better understand the chemistry, technologies, and applications Written for polymer chemists, materials scientists, and other researchers and industry, this book serves as a comprehensive reference for readers interested in the development and application of sustainable polymers.
Dynamics of Advanced Sustainable Nanomaterials and Their Related Nanocomposites at the Bio-Nano Interface highlights the most recent research findings (conducted over the last 5-6 years) on the dynamics of nanomaterials, including their multifaceted, advanced applications as sustainable materials. In addition, special attributes of these materials are discussed from a mechanistic and application point-of-view, including their sustainability and interfacial interactions at the bio-nano interface and different applications. This book presents an important reference resource on advanced sustainable nanomaterials for chemical, nano-, and materials technologists who are looking to learn more about advanced nanocomposites with sustainable attributes. Finally, the book examines the emerging market for sustainable materials and their advanced applications, with a particular focus on the bio-nano interface and their future outlook. - Features detailed information on the fundamentals of bio-nano interfacial interactions in sustainable nanomaterials - Includes advanced applications of these materials that will help the end user select the appropriate materials for their desired application - Features extensive information on the dynamics of these materials, helping the end user extend their work into new applications
This book provides a systematic overview of the processing and applications of sustainable polymers. The volume covers recent advances in biomedical, food packaging, fuel cell, membrane, and other emerging applications. The book begins by addressing different sections of biomedical application including use of carbohydrate-based therapeutics, nanohybrids, nanohydrogels, bioresorbable polymers and their composites, polymer-grafted nanobiomaterials for biomedical devices and implants, nanofibres, and others. The second part of this book discusses various processing and packaging materials for food packaging applications. The last section discusses other emerging applications, including using microbial fuel cells for waste water treatment, microfluidic fuel cells for low power applications, among others. This volume will be relevant to researchers working to improve the properties of bio-based materials for their advanced application and wide commercialization.
Advances in Polymeric Nanomaterials for Biomedical Applications examines advanced polymer synthetic strategies for developing novel biomaterials for use in medicine. With a strong focus on fundamentals and structure, the authors also explore their fabrication, along with their current and potential biomedical applications. The book begins with a look at the fundamentals of polymeric nanomaterials and their properties and then discusses the design of biomaterials and their applications in drug delivery. Further chapters explore important applications, such as imaging and regenerative medicine, including current challenges and future trends. This valuable resource is especially useful for materials and polymer scientists, and bioengineers wishing to broaden their knowledge of polymeric nanobiomaterials. Covers the complete spectrum of polymer nanomaterials used in biomedical applications Includes various applications, such as drug delivery, gene delivery, bio-imaging, tissue engineering and regenerative medicine, anti-microbial agents, and neuroscience Explores fundamental correlations between structures, properties and applications, as well as synthetic strategies for polymer nanomaterials
Smart membranes that respond to environmental stimuli are gaining attention because of their potential use in a variety of applications, from drug delivery to water treatment. Their surface characteristics and/or permeation properties, including pressure-driven hydraulic permeability and concentration-driven diffusional permeability, can be adjusted in response to small chemical and/or physical stimuli in the environment. This book will cover topics such as novel design and fabrication strategies, approaches for controlling structure and performance, as well as cutting-edge applications of smart membranes. It will deliver new insights and fundamentals for both professionals and newcomers in related fields. Edited by an internationally renowned expert and with contributions from key researchers, Smart Membranes provides a comprehensive overview of the topic. It will appeal to students and researchers across materials science, chemistry, chemical engineering, pharmaceutical science and biomedical science.