Noboru Motohashi: Anthocyanins as Functional Food Colors.- Yoshiaki Shirataki and Noboru Motohashi: Flavonoids in Sophora Species.- Mariko Ishihara, Hiroshi Sakagami, Masami Kawase, and Noboru Motohashi: Quantitative Structure-Cytotoxicity Relationship of Bioactive Heterocycles by the Semi-empirical Molecular Orbital Method with the Concept of Absolute Hardness.- Masami Kawase, Hiroshi Sakagami, and Noboru Motohashi: The Chemistry of Bioactive Mesoionic Heterocycles.- J. J. Aaron, M. D. Gaye Seye, S. Trajkovska, and Noboru Motohashi: Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications.-
This is the second volume of a first-of-its-kind four-volume book set that provides readers with up-to-date information on α-amino acids, the potential challenges in working with α-amino acids, the protecting groups for the carboxyl, amino and side chain groups of the amino acids, and the most popular heterocyclic compounds that are originating from alpha-amino acids. These heterocyclic compounds include hydantoins, thiohydantoins (including 2-thiohydantoins, 4-thiohydantoins, 2,4-dithiohydantoins), 2,5-diketopiperazines, N-carboxyanhydrides, N-thiocarboxyanhydrides, sydnones, sydnonimines, azlactones, pseudoazlactones, and oxazolidin-5-ones. This is the first resource to comprehensively collect all the heterocycles that can be directly prepared from α-amino acids. In addition, almost all kinds of synthetic methods for a particular type of heterocycles from alpha-amino acids are included, along with the detailed mechanistic discussions and experimental procedures. In Volume 2: Hydantoins, Thiohydantoins, and 2,5-Diketopiperazines compiles the three IUPAC accepted nomenclature systems for heterocyclic compounds, which will be very useful for readers working in the heterocyclic chemistry field for giving synthesized molecules their correct names. In addition, three groups of heterocyclic compounds, i.e., hydantoins, thiohydantoins (including 2-thiohydantoin, 4-thiohydantoin and 2,4-dithiohydantoin), and 2,5-diketopiperazines, have been organized with updated literature information. Particularly, all three groups of heterocyclic compounds have demonstrated many important biological activities, particularly anticancer and antibacterial activities. On the other hand, these three groups of heterocycles can be applied as substrates to make other chemical derivatives, particularly novel unnatural amino acids. All their reactivities have been compiled and updated. The other volumes include: Volume 1: Protecting Groups Volume 3: N-Carboxyanhydrides, N-Thiocarboxyanhydrides, and Sydnones Volume 4: Azlactones and Oxazolidin-5-ones All together, this unique 4-volume set thoroughly covers the two types of heterocyclic compounds that are originated from alpha-amino acids, providing carefully compiled updated information with detailed examples. The author has shared many thoughtful insights based on his strong background in physical organic chemistry. The volumes will be highly valuable for graduate students and senior students, as well as for professors and researchers working in the field of medicinal and pharmaceutical chemistry, organic chemistry, organic synthesis, heterocycles, and proteins and peptides.
Explanation of the structure-property relationship of a given molecule is generally simple because the characteristics of the atomic groups and chemical bonds and the effects emerging from their interaction have long been known, both from theore- cal studies and numerous experimental results. In contrast, it is often difficult to analyze, estimate, and account for the structure-properties relationship in sup- molecules. The characteristics of supramolecules are governed both by the nature of the constituent molecules and by their configuration while the characteristics of the constituent molecules are usually evident as mentioned above; their configu- tions are difficult to control, predict, and accurately estimate because of insufficient knowledge regarding the intermolecular forces. Moreover, since most of the int- molecular forces constructing supramolecules are weak, the supramolecular str- ture may vary depending on various factors, such as modification of the molecular structure, auxiliaries, and experimental conditions. Thus, in order to obtain supramolecules with the desired structures and properties, theoretical investigations on the intermolecular forces and accumulation of experimental studies on the re- tionship between the supramolecular structure and properties are both important.
Sulfonyl ynamides are highly versatile and synthetically useful reagents. This thesis details the modular synthesis and use of sulfonyl ynamides in order to access N-heterocyclic scaffolds, such as quinolines and pyrazoles. The synthesis of a wide array of sulfonyl ynamides can be realized via copper-catalyzed amidative cross-couplings or by elimination of dichloroenamide precursors. Additionally the use of Sonogashira chemistry to further diversify terminal ynamides and the synthesis of solid-supported ynamides was investigated. Electrophilically-activated amides can be reacted with sulfonyl ynamides in order to access highly functionalized 4-aminoquinolines. The straightforward amide activation procedure with triflic anhydride and 2-chloropyridine was found to tolerate a wide range of substrates, which allowed for the development of a library of 4-aminoquinolines with ease. Moreover, 4-aminopyrazoles can be prepared by reacting terminal sulfonyl ynamides with sydnones under copper catalysis. However, as the copper catalysts were also found to promote the degradation of the ynamides, a copper-free strain-promoted alternative was developed. An in situ prepared 3-azacyclohexyne was found to tolerate a wide array of C-4 substituted sydnones, producing a mixture of both the 3,4- and 4,3-fused pyrazoles in good yields. Additional investigations into heterocyclic methodology led to the development of highly sophisticated, non-symmetrical and axially-chiral dibenzo-1,3-diazepines, -oxazepines and -thiazepines from simple, commercially available anilines. The anilines were coupled to their corresponding reaction partners via a chloromethyl intermediate and the 7-membered ring was subsequently formed using direct arylation.
Following the successful and proven concept used in "Bioactive Heterocyclic Compound Classes" by the same editors, this book is the first to present approved pharmaceutical and agrochemical compounds classified by their carboxylic acid functionality in one handy volume. Each of the around 40 chapters describes one or two typical syntheses of a specific compound class and provides concise information on the history of development, mode of action, biological activity and field of application, as well as structure-activity relationships. In addition, similarities and differences between pharmaceuticals and agrochemicals are discussed in the introduction. Written by a team of experts in the field, this is a useful reference for researchers in academia and chemical or pharmaceutical companies working in the field of total synthesis and natural product chemistry, drug development, and crop protection research.
Green Synthetic Approaches for Biologically Relevant Heterocycles, Second Edition, Volume Two: Green Catalytic Systems and Solvents reviews this significant group of organic compounds within the context of sustainable methods and processes, expanding on the first edition with fully updated coverage and a whole range of new chapters. Volume Two explores green catalytic systems and solvents and the techniques surrounding this approach, including metal and magnetic catalysis to organocatalysis and solid acid catalysis, cycloaddition reactions, and varied approaches using ionic liquids. This updated edition is an essential resource on sustainable approaches for academic researchers, R&D professionals, and students working across medicinal, organic, natural product and green chemistry. - Provides fully updated coverage of the field with an emphasis on sustainability - Highlights a range of different eco-friendly solvents and environmentally-friendly catalysts - Collates the experience of a global team of expert contributors