This volume represents the state of the art for much current research in many-valued logics. Primary researchers in the field are among the authors. Major methodological issues of many-valued logics are treated, as well as applications of many-valued logics to reasoning with fuzzy information. Areas covered include: Algebras of multiple valued logics and their applications, proof theory and automated deduction in multiple valued logics, fuzzy logics and their applications, and multiple valued logics for control theory and rational belief.
In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. Recall that hypersequents are a natural generalization of Gentzen's style sequents that was introduced independently by Avron and Pottinger. In particular, we consider Hilbert's style, sequent, and hypersequent calculi for infinite-valued logics based on the three fundamental continuous t-norms: Lukasiewicz's, Godel?s, and Product logics. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Godel?s, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. We consider two cases of non-Archimedean multi-valued logics: the first with many-validity in the interval [0,1] of hypernumbers and the second with many-validity in the ring of p-adic integers. Notice that in the second case we set discrete infinite-valued logics. Logics investigated: 1. hyperrational valued Lukasiewicz's, Godel?s, and Product logics, 2. hyperreal valued Lukasiewicz's, Godel?s, and Product logics, 3. p-adic valued Lukasiewicz's, Godel?s, and Post's logics.
Lattice-valued Logic aims at establishing the logical foundation for uncertain information processing routinely performed by humans and artificial intelligence systems. In this textbook for the first time a general introduction on lattice-valued logic is given. It systematically summarizes research from the basic notions up to recent results on lattice implication algebras, lattice-valued logic systems based on lattice implication algebras, as well as the corresponding reasoning theories and methods. The book provides the suitable theoretical logical background of lattice-valued logic systems and supports newly designed intelligent uncertain-information-processing systems and a wide spectrum of intelligent learning tasks.
This is volume 1 of the two-volume set Soft Computing and Its Applications. This volume explains the primary tools of soft computing as well as provides an abundance of working examples and detailed design studies. The book starts with coverage of fuzzy sets and fuzzy logic and their various approaches to fuzzy reasoning. Precisely speaking, this b
The term "fuzzy logic," as it is understood in this book, stands for all aspects of representing and manipulating knowledge based on the rejection of the most fundamental principle of classical logic---the principle of bivalence. According to this principle, each declarative sentence is required to be either true or false. In fuzzy logic, these classical truth values are not abandoned. However, additional, intermediate truth values between true and false are allowed, which are interpreted as degrees of truth. This opens a new way of thinking---thinking in terms of degrees rather than absolutes. For example, it leads to the definition of a new kind of sets, referred to as fuzzy sets, in which membership is a matter of degree. The book examines the genesis and development of fuzzy logic. It surveys the prehistory of fuzzy logic and inspects circumstances that eventually lead to the emergence of fuzzy logic. The book explores in detail the development of propositional, predicate, and other calculi that admit degrees of truth, which are known as fuzzy logic in the narrow sense. Fuzzy logic in the broad sense, whose primary aim is to utilize degrees of truth for emulating common-sense human reasoning in natural language, is scrutinized as well. The book also examines principles for developing mathematics based on fuzzy logic and provides overviews of areas in which this has been done most effectively. It also presents a detailed survey of established and prospective applications of fuzzy logic in various areas of human affairs, and provides an assessment of the significance of fuzzy logic as a new paradigm.
This Festschrift has been put together on the occasion of Franz Baader's 60th birthday to celebrate his fundamental and highly influential scientific contributions. The 30 papers in this volume cover several scientific areas that Franz Baader has been working on during the last three decades, including description logics, term rewriting, and the combination of decision procedures. We hope that readers will enjoy the articles gathered in Franz's honour and appreciate the breadth and depth of his favourite areas of computer science.
This book constitutes the proceedings of the 16th Conference on Computability in Europe, CiE 2020, which was planned to be held in Fisciano, Italy, during June 29 until July 3, 2020. The conference moved to a virtual format due to the coronavirus pandemic. The 30 full and 5 short papers presented in this volume were carefully reviewed and selected from 72 submissions. CiE promotes the development of computability-related science, ranging over mathematics, computer science and applications in various natural and engineering sciences, such as physics and biology, as well as related fields, such as philosophy and history of computing. CiE 2020 had as its motto Beyond the Horizon of Computability, reflecting the interest of CiE in research transgressing the traditional boundaries of computability theory.
The papers presented in this volume examine topics of central interest in contemporary philosophy of logic. They include reflections on the nature of logic and its relevance for philosophy today, and explore in depth developments in informal logic and the relation of informal to symbolic logic, mathematical metatheory and the limiting metatheorems, modal logic, many-valued logic, relevance and paraconsistent logic, free logics, extensional v. intensional logics, the logic of fiction, epistemic logic, formal logical and semantic paradoxes, the concept of truth, the formal theory of entailment, objectual and substitutional interpretation of the quantifiers, infinity and domain constraints, the Löwenheim-Skolem theorem and Skolem paradox, vagueness, modal realism v. actualism, counterfactuals and the logic of causation, applications of logic and mathematics to the physical sciences, logically possible worlds and counterpart semantics, and the legacy of Hilbert's program and logicism. The handbook is meant to be both a compendium of new work in symbolic logic and an authoritative resource for students and researchers, a book to be consulted for specific information about recent developments in logic and to be read with pleasure for its technical acumen and philosophical insights.- Written by leading logicians and philosophers- Comprehensive authoritative coverage of all major areas of contemporary research in symbolic logic- Clear, in-depth expositions of technical detail- Progressive organization from general considerations to informal to symbolic logic to nonclassical logics- Presents current work in symbolic logic within a unified framework- Accessible to students, engaging for experts and professionals- Insightful philosophical discussions of all aspects of logic- Useful bibliographies in every chapter
The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic.
These are the proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2005, held in Barcelona (Spain), July 6–8, 2005. The ECSQARU conferences are biennial and have become a major forum for advances in the theory and practice of r- soning under uncertainty. The ?rst ECSQARU conference was held in Marseille (1991), and after in Granada (1993), Fribourg (1995), Bonn (1997), London (1999), Toulouse (2001) and Aalborg (2003). The papers gathered in this volume were selected out of 130 submissions, after a strict review process by the members of the Program Committee, to be presented at ECSQARU 2005. In addition, the conference included invited lectures by three outstanding researchers in the area, Seraf ́ ?n Moral (Imprecise Probabilities), Rudolf Kruse (Graphical Models in Planning) and J ́ erˆ ome Lang (Social Choice). Moreover, the application of uncertainty models to real-world problems was addressed at ECSQARU 2005 by a special session devoted to s- cessful industrial applications, organized by Rudolf Kruse. Both invited lectures and papers of the special session contribute to this volume. On the whole, the programme of the conference provided a broad, rich and up-to-date perspective of the current high-level research in the area which is re?ected in the contents of this volume. IwouldliketowarmlythankthemembersoftheProgramCommitteeandthe additional referees for their valuable work, the invited speakers and the invited session organizer.