High-altitude pseudo-satellites currently require large crews of highly trained personnel. In order for these platforms to become commercially viable, it is imperative that mission-level tasks are automated in a mission management system, while maintaining flight safety. The new method of behavior trees is investigated for this purpose and extended with proper initialization, continuous-time processing, and modular stateful tasks. The approach is implemented in the Modelica environment and evaluated in a complex mission Simulation.
This book puts the reader in the pilot's seat for a "day at the office" unlike any other. The Smell of Kerosene tells the dramatic story of a NASA research pilot who logged over 11,000 flight hours in more than 125 types of aircraft. Donald Mallick gives the reader fascinating first-hand description of his early naval flight training, carrier operations, and his research flying career with NASA. After transferring to the NASA Flight Research Center, Mallick became involved with projects that further pushed the boundaries of aerospace technology. These included the giant delta-winged XB-70 supersonic airplane, the wingless M2-F1 lifting body vehicle, and triple-sonic YF-12 Blackbird. Mallick also test flew the Lunar Landing Research Vehicle and helped develop techniques used in training astronauts to land on the Moon.
This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.
In the early 1990s, NASA Goddard Space Flight Center started researching and developing autonomous and autonomic ground and spacecraft control systems for future NASA missions. This research started by experimenting with and developing expert systems to automate ground station software and reduce the number of people needed to control a spacecraft. This was followed by research into agent-based technology to develop autonomous ground c- trol and spacecraft. Research into this area has now evolved into using the concepts of autonomic systems to make future space missions self-managing and giving them a high degree of survivability in the harsh environments in which they operate. This book describes much of the results of this research. In addition, it aimstodiscusstheneededsoftwaretomakefutureNASAspacemissionsmore completelyautonomousandautonomic.Thecoreofthesoftwareforthesenew missions has been written for other applications or is being applied gradually in current missions, or is in current development. It is intended that this book should document how NASA missions are becoming more autonomous and autonomic and should point to the way of making future missions highly - tonomous and autonomic. What is not covered is the supporting hardware of these missions or the intricate software that implements orbit and at- tude determination, on-board resource allocation, or planning and scheduling (though we refer to these technologies and give references for the interested reader).
The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.
Summary: A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions P, Q, and F. Numerical values for the weight functions are given for two-blade, three-blade, and six-blade propellers.