Bayesian Nonparametrics

Bayesian Nonparametrics

Author: Nils Lid Hjort

Publisher: Cambridge University Press

Published: 2010-04-12

Total Pages: 309

ISBN-13: 1139484605

DOWNLOAD EBOOK

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.


Bayesian Nonparametrics

Bayesian Nonparametrics

Author: J.K. Ghosh

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 311

ISBN-13: 0387226540

DOWNLOAD EBOOK

This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.


Bayesian Nonparametric Data Analysis

Bayesian Nonparametric Data Analysis

Author: Peter Müller

Publisher: Springer

Published: 2015-06-17

Total Pages: 203

ISBN-13: 3319189689

DOWNLOAD EBOOK

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.


Bayesian Nonparametrics via Neural Networks

Bayesian Nonparametrics via Neural Networks

Author: Herbert K. H. Lee

Publisher: SIAM

Published: 2004-01-01

Total Pages: 106

ISBN-13: 9780898718423

DOWNLOAD EBOOK

Bayesian Nonparametrics via Neural Networks is the first book to focus on neural networks in the context of nonparametric regression and classification, working within the Bayesian paradigm. Its goal is to demystify neural networks, putting them firmly in a statistical context rather than treating them as a black box. This approach is in contrast to existing books, which tend to treat neural networks as a machine learning algorithm instead of a statistical model. Once this underlying statistical model is recognized, other standard statistical techniques can be applied to improve the model. The Bayesian approach allows better accounting for uncertainty. This book covers uncertainty in model choice and methods to deal with this issue, exploring a number of ideas from statistics and machine learning. A detailed discussion on the choice of prior and new noninformative priors is included, along with a substantial literature review. Written for statisticians using statistical terminology, Bayesian Nonparametrics via Neural Networks will lead statisticians to an increased understanding of the neural network model and its applicability to real-world problems.


All of Nonparametric Statistics

All of Nonparametric Statistics

Author: Larry Wasserman

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 272

ISBN-13: 0387306234

DOWNLOAD EBOOK

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.


Nonparametric Statistical Methods

Nonparametric Statistical Methods

Author: Myles Hollander

Publisher: John Wiley & Sons

Published: 2013-11-25

Total Pages: 872

ISBN-13: 1118553292

DOWNLOAD EBOOK

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.


Bayesian Nonparametrics

Bayesian Nonparametrics

Author: J.K. Ghosh

Publisher: Springer Science & Business Media

Published: 2003-04-08

Total Pages: 311

ISBN-13: 0387955372

DOWNLOAD EBOOK

This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.


Mathematical Foundations of Infinite-Dimensional Statistical Models

Mathematical Foundations of Infinite-Dimensional Statistical Models

Author: Evarist Giné

Publisher: Cambridge University Press

Published: 2021-03-25

Total Pages: 706

ISBN-13: 1009022784

DOWNLOAD EBOOK

In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.


Bayesian Time Series Models

Bayesian Time Series Models

Author: David Barber

Publisher: Cambridge University Press

Published: 2011-08-11

Total Pages: 432

ISBN-13: 0521196760

DOWNLOAD EBOOK

The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.