Behaviour of Lithium-Ion Batteries in Electric Vehicles

Behaviour of Lithium-Ion Batteries in Electric Vehicles

Author: Gianfranco Pistoia

Publisher: Springer

Published: 2018-02-10

Total Pages: 343

ISBN-13: 3319699504

DOWNLOAD EBOOK

This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles.


Batteries for Electric Vehicles

Batteries for Electric Vehicles

Author: Helena Berg

Publisher: Cambridge University Press

Published: 2015-08-20

Total Pages: 253

ISBN-13: 1316368637

DOWNLOAD EBOOK

This fundamental guide teaches readers the basics of battery design for electric vehicles. Working through this book, you will understand how to optimise battery performance and functionality, whilst minimising costs and maximising durability. Beginning with the basic concepts of electrochemistry, the book moves on to describe implementation, control and management of batteries in real vehicles, with respect to the battery materials. It describes how to select cells and batteries with explanations of the advantages and disadvantages of different battery chemistries, enabling readers to put their knowledge into practice and make informed and successful design decisions, with a thorough understanding of the trade-offs involved. The first of its kind, and written by an industry expert with experience in academia, this is an ideal resource for both students and researchers in the fields of battery research and development as well as for professionals in the automotive industry extending their interest towards electric vehicles.


Automotive Battery Technology

Automotive Battery Technology

Author: Alexander Thaler

Publisher: Springer Science & Business Media

Published: 2014-01-30

Total Pages: 135

ISBN-13: 3319025236

DOWNLOAD EBOOK

The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.


Lead-Acid Batteries for Future Automobiles

Lead-Acid Batteries for Future Automobiles

Author: Jürgen Garche

Publisher: Elsevier

Published: 2017-02-21

Total Pages: 708

ISBN-13: 0444637036

DOWNLOAD EBOOK

Lead-Acid Batteries for Future Automobiles provides an overview on the innovations that were recently introduced in automotive lead-acid batteries and other aspects of current research. Innovative concepts are presented, some of which aim to make lead-acid technology a candidate for higher levels of powertrain hybridization, namely 48-volt mild or high-volt full hybrids. Lead-acid batteries continue to dominate the market as storage devices for automotive starting and power supply systems, but are facing competition from alternative storage technologies and being challenged by new application requirements, particularly related to new electric vehicle functions and powertrain electrification. - Presents an overview of development trends for future automobiles and the demands that they place on the battery - Describes how to adapt LABs for use in micro and mild hybrid EVs via collector construction and materials, via carbon additives, via new cell construction (bipolar), and via LAB hybrids with Li-ion and supercap systems - System integration of LABs into vehicle power-supply and hybridization concepts - Short description of competitive battery technologies


Battery Technology Handbook

Battery Technology Handbook

Author: H.A. Kiehne

Publisher: CRC Press

Published: 2003-08-29

Total Pages: 552

ISBN-13: 9780203911853

DOWNLOAD EBOOK

This practical reference remains the most comprehensive guide to the fundamental theories, techniques, and strategies used for battery operation and design. It includes new and revised chapters focusing on the safety, performance, quality, and enhancement of various batteries and battery systems. From automotive, electrochemical, and high-energy applications to system implementation, selection, and standardization, the Second Edition presents expert discussions on electrochemical energy storage, the advantages of battery-powered traction, the disposal and recycling of used batteries, hazard prevention, and the chemistry and physics of lithium primary batteries.


Electric Vehicle Battery Systems

Electric Vehicle Battery Systems

Author: Sandeep Dhameja

Publisher: Elsevier

Published: 2001-10-30

Total Pages: 243

ISBN-13: 0080488765

DOWNLOAD EBOOK

Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems.* Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies


Transitions to Alternative Transportation Technologies

Transitions to Alternative Transportation Technologies

Author: National Research Council

Publisher: National Academies Press

Published: 2008-11-17

Total Pages: 141

ISBN-13: 0309134366

DOWNLOAD EBOOK

Hydrogen fuel cell vehicles (HFCVs) could alleviate the nation's dependence on oil and reduce U.S. emissions of carbon dioxide, the major greenhouse gas. Industry-and government-sponsored research programs have made very impressive technical progress over the past several years, and several companies are currently introducing pre-commercial vehicles and hydrogen fueling stations in limited markets. However, to achieve wide hydrogen vehicle penetration, further technological advances are required for commercial viability, and vehicle manufacturer and hydrogen supplier activities must be coordinated. In particular, costs must be reduced, new automotive manufacturing technologies commercialized, and adequate supplies of hydrogen produced and made available to motorists. These efforts will require considerable resources, especially federal and private sector funding. This book estimates the resources that will be needed to bring HFCVs to the point of competitive self-sustainability in the marketplace. It also estimates the impact on oil consumption and carbon dioxide emissions as HFCVs become a large fraction of the light-duty vehicle fleet.


Earth Day

Earth Day

Author: Melissa Ferguson

Publisher: Raintree

Published: 2021-10-28

Total Pages: 33

ISBN-13: 1398212954

DOWNLOAD EBOOK

Earth Day celebrates our beautiful planet and calls us to act on its behalf. Some people spend the day planting flowers or trees. Others organize neighborhood clean-ups, go on nature walks or make recycled crafts. Readers will discover how a shared holiday can have multiple traditions and be celebrated in all sorts of ways.


Valve-Regulated Lead-Acid Batteries

Valve-Regulated Lead-Acid Batteries

Author: Patrick T. Moseley

Publisher: Elsevier

Published: 2004-02-24

Total Pages: 603

ISBN-13: 008047473X

DOWNLOAD EBOOK

For many decades, the lead-acid battery has been the most widely used energy-storage device for medium- and large-scale applications (approximately 100Wh and above). In recent years, the traditional, flooded design of the battery has begun to be replaced by an alternative design. This version - the valve-regulated lead-acid (VRLA) battery - requires no replenishment of the water content of the electrolyte solution, does not spill liquids, and can be used in any desired orientation. Since the VRLA battery operates in a somewhat different manner from its flooded counterpart, considerable technological development has been necessary to meet the exacting performance requirements of the full range of applications in which rechargeable batteries are used. The valve-regulated design is now well established in the industrial battery sector, and also appears set to be adopted widely for automotive duty. This book provides a comprehensive account of VRLA technology and its uses. In the future, all industrial processes - including the manufacture of batteries - will be required to conform to the conventions of sustainability. Accordingly, the crucial areas of the environmental impact associated with the production and use of VRLA batteries and the recycling of spent units are also treated thoroughly. Valve-Regulated Lead-Acid Batteries gives an essential insight into the science that underlies the development and operation of VRLA batteries and is a comprehensive reference source for those involved in the practical use of the technology in key energy-storage applications. - Covers all major advances in the field - Provides a comprehensive account of VRLA technology and its uses - First book dedicated to this technology


Advances in Battery Technologies for Electric Vehicles

Advances in Battery Technologies for Electric Vehicles

Author: Bruno Scrosati

Publisher: Woodhead Publishing

Published: 2015-05-25

Total Pages: 547

ISBN-13: 1782423982

DOWNLOAD EBOOK

Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. - Provides an in-depth look into new research on the development of more efficient, long distance travel batteries - Contains an introductory section on the market for battery and hybrid electric vehicles - Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries