Optimization is a field important in its own right but is also integral to numerous applied sciences, including operations research, management science, economics, finance and all branches of mathematics-oriented engineering. Constrained optimization models are one of the most widely used mathematical models in operations research and management science. This book gives a modern and well-balanced presentation of the subject, focusing on theory but also including algorithims and examples from various real-world applications. Detailed examples and counter-examples are provided--as are exercises, solutions and helpful hints, and Matlab/Maple supplements.
This volume provides a comprehensive introduction to the theory of (deterministic) optimization. It covers both continuous and discrete optimization. This allows readers to study problems under different points-of-view, which supports a better understanding of the entire field. Many exercises are included to increase the reader's understanding.
This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.
Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.
This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.
A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
An account of the fundamental principles of optimization theory blended in a judicious way with current research. It helps the reader to probe into such advanced topics like Non-smooth Optimization and Conjugate Duality.
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea’s motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.